
Shallow to
Deep Neural

Networks

Computer Vision and Artificial
Intelligence

Dr Varun Ojha
varun.ojha@ncl.ac.uk

School of Computing

Newcastle University

Image by Dall-E 3

Learning objectives (neural networks)

By the end of this week, you will be able to

• Learn ‘concepts of learning’ in Neural Networks

• Understand gradient descent and backpropagation algorithms

• Distinguish shallow and deep neural network architectures

• Apply and evaluate neural networks for a pattern recognition

(image classification) problem – in practical session

2

9:37 AM

Content (neural networks)
• Part 1: Introduction

• Part 2: Fundamental Theory

• Supervised Learning problem

• Design of learning process

• Gradient descent optimization

• Part 3: Neural Network Architectures

• Neural Network Components

• The Backpropagation algorithm

• Deep Neural Networks

• Part 4: Practical Exercise

3

9:37 AM

I recommend Deep Learning by C Bishop

https://www.bishopbook.com/

https://www.bishopbook.com/

Part 1
 Introduction

4

9:37 AM

Image by Dall-E 3

5

9:37 AM

Brain / Intelligence

esenkartal / iStock Vectors / Getty Images

Intrinsic

Intelligence?
Inside a baby’s mind

Experiment:

Warneken &Tomasello (2006)

6

9:37 AM

Video Source:

https://www.youtube.com/watch?v=cUWIIxpUfM0

(Accessed on 21 Feb 2021)

https://www.youtube.com/watch?v=cUWIIxpUfM0

Causal understanding of
water displacement by a crow

Experiment: Sarah et al. (2014), Auckland and Cambridge
Video Source: https://www.youtube.com/watch?v=ZerUbHmuY04

7

https://www.youtube.com/watch?v=ZerUbHmuY04

9:37 AM

8

Learning by
example

9

Learning / Training
Video Source:
https://www.youtube.com/watch?v=Ak7bPuR2rDw
(Accessed on 21 Feb 2021)

https://www.youtube.com/watch?v=Ak7bPuR2rDw

10

9:37 AM

Supervised Unsupervised

Other forms

of Learning
semi- supervised

self-supervised

reinforcement

Types of Learning

(not in scope of this module)(re-visit previous lectures)(this lecture)

11

9:37 AM

learner𝑥 ො𝑦
OutputInput

Learning loop

Unsupervised
Categorise input features

or learns the input

features representation

or learns the structure of

the input

Re-visit previous lectures: Clustering (K-Means, DB Scan); Dimensionality reduction; Anomaly detection, Variational Autoencoder (VAE; is not a

part of this module):

12

9:37 AM

learner𝑥 ො𝑦
OutputInput

Learning loop

Reinforcement learning

𝑟

Environment
reward

Example are game playing (most popular games are ‘Atari’ and ‘Hide and Seek’ where reinforcement learning (RL) is used, or RL is heavily used

in robotics for learning control and actions)

Explore (not part of this module): Reinforcement Learning: An Introduction by Richard S Sutton

(this topic is not part of this module)

13

9:37 AM

learner𝑥 ො𝑦
OutputInput

Supervisor
𝑦 = 𝑓(𝑥)

Feedback loop

Supervised

Appel

Orange

target

Learning 𝒇 ∶ 𝑿 → 𝒚

14

9:37 AM

𝓧

Supervised learning is a mapping 𝑓 of inputs 𝓧 to outputs 𝓨

𝒇

Inputs 𝐗 ∈ Input space 𝒳 outputs 𝒚 ∈ output space 𝒴

𝓨

Learning 𝒇 ∶ 𝑿 → 𝒚

15

9:37 AM

𝓧

We need to find the unknown target function 𝒇 that maps 𝑥 to 𝑦

𝒇 ∈ 𝓗

Inputs 𝐗 ∈ Input space 𝓧 outputs 𝒚 ∈ output space 𝓨model space 𝓗

𝓨

Learning: 𝒈 𝐗 ~ 𝒇 𝐗

16

9:37 AM

𝑥1 𝑥2 𝑦

𝐱𝟏: 0 0 0

𝐱𝟐: 0 1 0

𝐱𝟑: 1 0 0

𝐱𝟒: 1 1 1

Input 𝐗 = 𝐱𝟏, 𝐱𝟐, 𝐱𝟑, 𝐱𝟒
𝑇, 𝐱𝑖 = (𝑥𝑖1, 𝑥𝑖2) ,

Output 𝑦 = {0,1}

Number of Inputs 𝑑 = 2

Each input 𝑥 takes values either 0 or 1

Input-space 𝓧 = 2𝑑 = 22 = 4

Number of outputs 1

Output 𝑦 takes 2 options from 0,1

Example Training Task: AND Logic Problem

We need to search a function 𝑔(𝑋) that can approximate 𝑓(𝑋)

Colour Shape

Fruit

Fruit Name

17

9:37 AM

ℎ𝑡 ∈ 𝓗 → 𝑔x ො𝑦 = 𝑔(x)
OutputInput

Supervisor 𝑦 = 𝑓(x)

Feedback loop

Search a function 𝒈: 𝐗 → 𝒚 that approximates 𝒇(𝒙)

Part 2

Learning Theory

18

Requirements of Learning

19

9:37 AM

Learning needs to

Represent a model (use a neural network architecture, deep neural networks)

Evaluate the model (use a loss/cost function, e.g., Cross Entropy or MSE)

Optimize the model (use an optimizer, e.g., backpropagation – Adam or SGD)

Represent a model

20

9:37 AM

𝑥1 𝑥2 𝑦

1: 0 0 0

2: 0 1 0

3: 1 0 0

4: 1 1 1

𝑥1

𝑥2

ℎ𝑡

10

0

1

A line separating data can be considered as a model

𝒟

Represent a model

21

9:37 AM

𝑥1

𝑥2

ℎ𝑡

10

0

1

A line separating data can be considered a model

which equivalent to a single neuron or a perceptron

𝑥1
1

𝑥2

𝑤1

𝑤2

𝑤0

ℎ𝑡

Represent a model 𝒉𝒕 ∈ 𝑯

22

9:37 AM

𝑥1
𝑥0

A line separating data can be considered a model

which equivalent to a single neuron or a perceptron

Perceptron is a simple linear combination of

inputs, which is written as:

𝒉𝒕 = 𝒈 𝒙 = σ𝒊=𝟏
𝒅 𝒘𝒊 𝒙𝒊 ≥ 𝒙𝟎𝒘𝟎 ,

where 𝑤0 is a threshold.

The model ℎ𝑡 has the weights 𝑤𝑖 and the

threshold 𝑤0 as its trainable parameters.

𝑥2

𝑤1

𝑤2

𝑤0

Model ℎ𝑡 as a perceptron / single neuron.

ℎ𝑡

Read: Sec 4.1 and Sec 5.1, Deep Learning by C Bishop

This equation is also equivalent to linear regression (y = mx + c)

Real bottleneck of

Deep Learning

Represent a model 𝒉𝒕 ∈ 𝑯

23

9:37 AM

A line separating data can be considered as a model

A model ℎ𝑡 as a perceptron.

𝑖=1

𝑑

𝑤𝑖 𝑥𝑖 ≥ 𝑥0𝑤0

𝑖=1

𝑑

𝑤𝑖 𝑥𝑖 − 𝑥0𝑤0 = 0

For an artificial input (also called bias) 𝑥0 = 1 we

have:

𝑖=0

𝑑

𝑤𝑖 𝑥𝑖 = 0 hyperplane as decision boundary

This equation is also called a hyperplane

This is an equation of a single neuron

𝑥1

𝑥2

ℎ𝑡

10

0

1

Hyperplane

Which model 𝒉𝒕 ∈ 𝑯 to pick?

24

9:37 AM

How to evaluate a model: compute cost of choosing a model

Cost function such as the error rate:

𝐸(ℎ𝑡(𝒟)) =
1

𝑁

𝑗=1

𝑁

𝑔𝐰(𝐱𝑗) ≠ 𝑓(𝐱𝑗)

𝑥1 𝑥2 𝑦 = 𝑓(𝐱)

1: 0 0 0

2: 0 1 0

3: 1 0 0

4: 1 1 1

𝒟

𝑥1

𝑥2

ℎ𝑡

10

0

1

ℎ1

ℎ2

ℎ𝑡−1

ℎ𝑀

Optimise model 𝒉𝒕 ∈ 𝑯 by minimizing error

25

9:37 AM

How to optimize a model: compute cost of adjust the model weights

Function 𝑔 of the model has parameter 𝐰:

ො𝑦 = 𝑔𝐰(𝐱) =

𝑖=0

𝑑

𝑤𝑖 𝑥𝑖 = 0

Simple algorithm:

Repeat parameter 𝐰 update for 𝑡 = 2, 3, … , 𝑀 as:

𝐰𝑡 = 𝐰𝑡−1 + ො𝑦 𝐱,

Until the error rate 𝐸(ℎ𝑡(𝒟)) is acceptable or close to zero.

𝑥1

𝑥2

ℎ𝑡

10

0

1

ℎ1

ℎ2

ℎ𝑡−1

ℎ𝑀

26

9:37 AM

𝑥

𝑦

30

0

3

Let’s see an example (house price):

𝑥 = 𝑎𝑟𝑒𝑎(𝑚2) 𝑦 = 𝑝𝑟𝑖𝑐𝑒 (𝑖𝑛 £)

1: 1000 100K

2: 2000 200K

3: 3000 300K

Now, the cost function is a squared error:

𝐸(ℎ𝑡(𝐱) =
1

2𝑁

𝑗=1

𝑁

𝑔𝐰(𝐱𝑗) − 𝑓(𝐱𝑗)
2

1 2

1

2

Does error 𝑬(𝒉𝒕(𝓓)) minimization work?

Note that y and x values are simplified to 1, 2 and 3

Does error 𝑬(𝒉𝒕(𝓓)) minimization work?

27

9:37 AM

𝑥

𝑦

0

3

1

2

1.5

3

0.5 1.0

1.5

2.5

2

2

0.5

Model ℎ𝑡 for 𝑤0 = 0 and 𝑤1 = 0.0:

𝑔𝐰 𝑥𝑖 = 𝑤0 + 𝑤1𝑥𝑖 for 𝑖 = 1, 2, 3

Error 𝐸(𝑤1) for 𝑤0 = 0 and 𝑤1 = 0.0:

𝐸 𝑔𝐰 𝐱 =
1−0 2+ 2−0 2+ 3−0 2

2∗3
= 2.33

ℎ𝑡

30 1 2 0.0

0.0

𝑤1

𝐸(𝑔𝑤1
(𝑥))

Model / line is

close to x-axis

Note that y and x values are simplified to 1, 2 and 3 =
1

2𝑁
σ𝑗=1

𝑁 𝑓 𝐱𝑗 − 𝑔𝐰(𝐱𝑗)
2

Does error 𝑬(𝒉𝒕(𝓓)) minimization work?

28

9:37 AM

𝑥

𝑦

30
0

3

1 2

1

2

1.5

3

0.5 1.0

1.5

2.5

2

2

0.5

Model ℎ𝑡 for 𝑤0 = 0 and 𝑤1 = 0.5:

𝑔𝐰 𝑥𝑖 = 𝑤0 + 𝑤1𝑥𝑖 for 𝑖 = 1, 2, 3

Error 𝐸(𝑤1) for 𝑤0 = 0 and 𝑤1 = 0.5:

𝐸 𝑔𝐰 𝐱 =
1−0.5 2+ 2−1 2+ 3−1.5 2

2∗3
= 0.58

ℎ𝑡

0.0

0.0

𝑤1

𝐸(𝑔𝑤1
(𝑥))Note that y and x values are simplified to 1, 2 and 3 =

1

2𝑁
σ𝑗=1

𝑁 𝑓 𝐱𝑗 − 𝑔𝐰(𝐱𝑗)
2

Does error 𝑬(𝒉𝒕(𝓓)) minimization work?

29

9:37 AM

𝑥

𝑦

30
0

3

1 2

1

2

𝑤1

𝐸(𝑔𝑤1
(𝑥))

1.5

3

0.5 1.0

1.5

2.5

2

2

0.5

Model ℎ𝑡 for 𝑤0 = 0 and 𝑤1 = 1:

𝑔𝐰 𝑥𝑖 = 𝑤0 + 𝑤1𝑥𝑖 for 𝑖 = 1, 2, 3

Error 𝐸(𝑤1) for 𝑤0 = 0 and 𝑤1 = 1:

𝐸 𝑔𝐰 𝐱 =
1−1 2+ 2−2 2+ 3−3 2

2∗3
= 0.0

ℎ𝑡

0.0

0.0

Note that y and x values are simplified to 1, 2 and 3 =
1

2𝑁
σ𝑗=1

𝑁 𝑓 𝐱𝑗 − 𝑔𝐰(𝐱𝑗)
2

Does error 𝑬(𝒉𝒕(𝓓)) minimization work?

30

9:37 AM

𝑥

𝑦

30
0

3

1 2

1

2

𝑤1

𝐸(𝑔𝑤1
(𝑥))

1.5

3

0.5 1.0

1.5

2.5

2

2

0.5

Model ℎ𝑡 for 𝑤0 = 0 and 𝑤1 = 1:

𝑔𝐰 𝑥𝑖 = 𝑤0 + 𝑤1𝑥𝑖 for 𝑖 = 1, 2, 3

Error 𝐸(𝑤1) for 𝑤0 = 0 and 𝑤1 = 1:

𝐸 𝑔𝐰 𝐱 =
1−1 2+ 2−2 2+ 3−3 2

2∗3
= 0.0

ℎ𝑡

0.0

0.0

=
1

2𝑁
σ𝑗=1

𝑁 𝑓 𝐱𝑗 − 𝑔𝐰(𝐱𝑗)
2

Note that y and x values are simplified to 1, 2 and 3

Yes, it does

But how
much

weight to
change in

each step?

Optimizer: Gradient Descent

31

9:37 AM

𝐰

𝐸(𝐰)

Function 𝑔 of the model has parameter 𝐰:

 𝑔𝐰(𝐱) =

𝑖=0

𝑑

𝑤𝑖 𝑥𝑖 = 0

Gradient Descent Algorithm:

Repeat parameter 𝐰 update for 𝑡 = 2, 3, … , 𝑀.

𝐰𝑡 = 𝐰𝑡−1 + 𝜼
𝝏𝑬 𝒈𝒘 𝒙

𝝏 𝐰𝒕
𝐱 for learning rate 𝜂

Until error rate 𝐸 𝑔𝐰 𝐱 is acceptable or goes to zero.

learning

Steps

initial

weight 𝐰𝟏

Global

Optimum

𝐰∗

𝐰𝑡 = 𝐰𝑡−1 + ො𝑦 𝐱,

Sec 7.2, Deep Learning by C Bishop

Optimizer: Gradient Descent

32

9:37 AM

𝐰

𝐸(𝐰)

Function 𝑔 of the model has parameter 𝐰:

 𝑔𝐰(𝐱) =

𝑖=0

𝑑

𝑤𝑖 𝑥𝑖 = 0

Gradient Descent Algorithm:

Repeat parameter 𝐰 update for 𝑡 = 2, 3, … , 𝑀.

𝐰𝑡 = 𝐰𝑡−1 + ∆ 𝐰𝑡 , where ∆ is weight change (step) at 𝑡

Until error rate 𝐸 𝑔𝐰 𝐱 is acceptable or goes to zero

learning

Steps

initial

weight 𝐰𝟏

Global

Optimum

𝐰∗

Sec 7.2, Deep Learning by C Bishop

𝜼
𝝏𝑬 𝒈𝒘 𝒙

𝝏 𝐰𝒕

Versions of Gradient Descent

33

9:37 AM

Stochastic Gradient Descent

𝑡 = 0

𝐰 initial weights

for 𝑡 in epochs do

 𝒟 ← 𝑠ℎ𝑢𝑓𝑓𝑙𝑒(𝒟)

 for 𝐱𝑗 ∈ 𝒟 do // for each sample

 ∇𝐰𝑗 = 𝜕𝐸(𝑔𝐰𝒕
(𝐱𝒋))/(𝜕𝐰𝑡) // gradient of

error with respect to weight 𝐰𝑗

 𝐰𝑗 = 𝐰𝑗−1 + 𝜼∇𝐰𝑗𝐱𝒋

 𝑡 = 𝑡 + 1

Batch Gradient Descent

𝑡 = 0

𝐰 initial weights

for 𝑡 in epochs do

 𝒟 ← 𝑠ℎ𝑢𝑓𝑓𝑙𝑒(𝒟)

 for 𝐱𝑗 ∈ 𝒟 do // for each sample

 ∇𝐰 = ∇𝐰 + 𝜕𝐸(𝑔𝐰(𝐱𝒋))/ 𝜕𝐰 𝐱𝑗 // gradient of

error with respect to weight 𝐰𝑗

 𝐰𝑡 = 𝐰𝑡−1 + 𝜼
∇𝐰

|𝒟|

 𝑡 = 𝑡 + 1

Sec 7.2, Deep Learning by C Bishop

Gradient Descent: Versions

34

9:37 AM

epochs

cost

epochs

Stochastic Gradient Descent Batch Gradient Descent

cost

Sec 7.2, Deep Learning by C Bishop

Gradient Descent: Versions

35

9:37 AM

Stochastic Gradient Descent Batch Gradient Descent

Sec 7.2, Deep Learning by C Bishop

Training Method
(from previous lecturers)

36

9:37 AM

Training Set Test Set

Training Method
(from previous lecturers)

37

9:37 AM

epochs

cost
Low bias high bias

Test cost

Training cost

Bias-Variance Issue
(from previous lecturers)

38

9:37 AM

Accuracy is off by

large margin

Accuracy is off by

small margin

high

bias

low

bias

low

variance

high

variance

Accuracy vary

marginally on trials

Accuracy vary

a lot on trials

Sec 4.3, Deep Learning by C Bishop

Is the chosen model good?
(from previous lecturers)

39

9:37 AM

Avoid Overfitting
(from previous lecturers)

40

9:37 AM

Training Set Test SetValidation Set

Figure 1.6, Deep Learning by C Bishop

41

9:37 AM

epochs

cost

Low bias high bias

Validation cost

Training cost

Stop Training here!

Pick this model!

Avoid Overfitting
(from previous lecturers)

Sec 9.3.1 Deep Learning by C Bishop

Part 3

Neural Network
Architectures

42

43

9:37 AM

learner𝑥 ො𝑦
OutputInput

Supervisor
𝑓(𝑥)

Feedback loop

Regression and Classification

44

Discrete

(Categorical)

labeled data

#

Inputs Attributes

(Independent)

Target/Class/Output

Attributes

(Dependent)

A1 A2 A3

Records

Ex. 0 A10 A20 A30

Ex. 1 A11 A21 A31

Ex. 2 A12 A22 A32

Ex. 3 A13 A23 A33

Ex. 4 A14 A24 A34

Ex. 5 A15 A25 A35

Ex. 6 A16 A26 A36

Ex. 7 A17 A27 A37

Ex. 8 A18 A28 A38

Ex. 9 A19 A29 A39

Continuous

(Numerical)

labeled data

Regression

Classification

Target (Class)

Attributes (A3)

Class/Traget attribute

9:37 AM

(from previous lecturers)

Tasks: Regression and Classification

45

Discrete

labeled data

#
Inputs (X) Class (Y)

Length (cm) Weight (kg) Sales

Ex. 0 23.2 3.2 Good

Ex. 1 70.9 19.5 Bad

Ex. 2 60.5 18.51 Bad

Ex. 3 24.5 4.6 Good

Ex. 4 110.0 35.83 Bad

Ex. 5 23.8 3.7 Good

Ex. 6 25.8 4.5 Good

Ex. 7 24.7 4.9 Good

Ex. 8 85.8 25.6 Bad

Ex. 9 78.8 20.33 Bad

#

Inputs (X) Target (Y)

Area (m2) Distance(mile) Price (£Bn)

Ex. 0 76.85 17.27 0.15

Ex. 1 76.97 19.54 0.5

Ex. 2 77.10 18.51 0.76

Ex. 3 85.28 46.09 0.23

Ex. 4 85.42 35.83 0.6

Ex. 5 88.02 2.59 0.67

Ex. 6 77.25 6.34 0.89

Ex. 7 77.49 6.98 0.2

Ex. 8 85.81 12.18 0.55

Ex. 9 98.81 2.18 9.45

Continuous

labeled data

9:37 AM

(from previous lecturers)

Regression

46

Stock

Price

(𝑦)

Revenue (𝑥)

𝑒1

𝑒2

𝑒3 𝑒4

𝑒5

𝑒6 𝑒7

𝑒8

Error

 𝑒𝑖 = ෝ𝑦𝑖 – 𝑦𝑖

✓ Best Fit

✓ Find the line

(parameters of a line

equation) that

minimize the norm of

the y errors

✓ (sum of the squares)

𝒆 =

𝑖=1

8

ෝ𝑦𝑖 – 𝑦𝑖
2

ො𝑦 = 𝑓(𝑥) = 𝑤1𝑥 + 𝑤0

9:37 AM

(from previous lecturers)

Loss function: Mean Squared Error, 𝑬

48

9:37 AM

𝑬 =
1

𝑛

𝑖=1

𝑛

ෝ𝑦𝑖 – 𝑦𝑖
2

ෝ𝑦𝑖 - predicted output

𝑦𝑖 - target output

𝑛 - number of examples in training/test set

Loss function: Mean Absolute Error, 𝑬

49

9:37 AM

𝑬 =
1

𝑛

𝑖=1

𝑛

| ෝ𝑦𝑖 – 𝑦𝑖|

ෝ𝑦𝑖 - predicted output

𝑦𝑖 - target output

𝑛 - number of examples in training/test set

Classification

50

✓ Best Fit

✓ Find the line

(parameters of a line

equation) that

minimize the error

(misclassification) rate

𝐞 =
1

𝑛

𝑖=1

𝑛

ෝ𝑦𝑖 ≠ 𝑦𝑖

ො𝑦 = 𝑓(𝑥) = 𝑤1𝑥 + 𝑤0

Attribute
(𝑥2)

Attribute (𝑥1)

9:37 AM

(from previous lecturers)

Loss function: Misclassification rate, 𝑬

52

9:37 AM

𝑬 =
1

𝑛

𝑖=1

𝑛

(ෝ𝑦𝑖 ≠ 𝑦𝑖)

ෝ𝑦𝑖 - predicted output

𝑦𝑖 - target output

𝑛 - number of examples in training/test set

Loss function: Log loss

53

9:37 AM

−𝐥𝐨𝐠 𝐏 𝑦𝑖 ෝ𝑦𝑖) = −((𝒚𝒊)𝐥𝐨𝐠(ෝ𝑦𝑖) + 𝟏 − 𝒚𝒊 𝐥𝐨𝐠 𝟏 − ෝ𝑦𝑖)

ෝ𝑦𝑖 - predicted output

𝑦𝑖 - target output

𝑛 - number of examples in training/test set

This part will be zero if 𝑦𝑖 = 0 This part will be zero if 𝑦𝑖 = 1

It effectively works by updating network weights on correct classification

and penalizing models for a misclassification

Cross Entropy, 𝑬

54

9:37 AM

𝐸 = −

𝑖=1

𝐶

𝒚𝒊𝐥𝐨𝐠 ෝ𝒚𝑖

ෝ𝑦𝑖 - predicted output distribution (SoftMax output)

𝑦𝑖 - target output (target out distribution , one-hot encoding)

𝐶 - number of classes

Neural Networks

55

Biological networks of

neurons in human brains

AI representation

of biological neural networks

Inputs

neurons

Hidden

neurons

Output

neuron

9:37 AM

56

Inputs

neurons

Hidden

neurons

Output

neuron

Biological networks of

neurons in human brains

Mathematical representation

of the neural networks

1 0 1

0 1 1

1

1

0

1 2 3
AI representation

of biological neural networks

9:37 AM

Neural Networks

57

9:37 AM

Output

layer

Hidden

layer

input

layer

NEURAL NETWORK
Architecture

58

9:37 AM

Output

layer

Hidden

layer

input

layer

𝑾𝑯𝑰 =

𝒘𝟏,𝟏 ⋯ 𝒘𝟏,𝟑

⋮ ⋱ ⋮
𝒘𝟒,𝟏 ⋯ 𝒘𝟒,𝟑

𝑾𝑯𝑶 =

𝒘𝟏𝟏

⋮
𝒘𝟒𝟏

NEURAL NETWORK
Weights (parameters)

59

9:37 AM

𝒉𝒋 = 𝝋𝒉

𝒊=𝟏

𝒏

𝒘𝒋𝒊. 𝒙𝒊

For 𝒏 inputs, a hidden layer node’s 𝒉𝒋

output is expressed as:

Where 𝝋𝒉 is an activation function:

NEURAL NETWORK
Computation: Hidden layer

Output

layer

Hidden

layer

input

layer

𝑯𝟏𝒘𝟏,𝟏

𝒘𝟏,𝟐

𝒘𝟏,𝟑

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒉𝟏

NEURAL NETWORK
Computation: Output layer

60

9:37 AM

Output

layer

Hidden

layer

input

layer

𝒉𝒋 = 𝝋𝒉

𝒊=𝟏

𝒏

𝒘𝒋𝒊. 𝒙𝒊

𝑯𝟏𝒘𝟏,𝟏

𝒘𝟏,𝟐

𝒘𝟏,𝟑

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒉𝟏

For 𝒏 inputs, a hidden layer node’s 𝒉𝒋

output is expressed as:

ෝ𝒚 = 𝝋𝑶

𝒋=𝟏

𝒎

𝒘𝒋𝒌. 𝒉𝒋

For 𝑚 hidden nodes and an output node, the

output nodes output is expressed as:

Where 𝝋𝒉 is an activation function:ෝ𝒚
𝑶𝟏

𝒉𝒎

𝒉𝟐

𝒉𝟑

61

9:37 AM

𝝋 𝒙 =
𝟏

𝟏 + 𝒆−𝒙

Sigmoid activation

𝝋 𝒙

NEURAL NETWORK
Activation function

62

9:37 AM

𝝋 𝒙 =
𝒆𝒙 − 𝒆−𝒙

𝒆𝒙 + 𝒆−𝒙

Tangent hyperbolic activation

𝝋 𝒙

NEURAL NETWORK
Activation function

63

9:37 AM

𝝋 𝒙 = 𝒎𝒂𝒙 (𝟎, 𝒙)

Rectified Linear Unit (ReLU)

𝝋 𝒙

Source: https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7NEURAL NETWORK
Activation function

Sigmoid

64

9:37 AM

1.0

0.5

0.0

-0.5

-1.0

-2.0 0.0 2.0

1.0

0.5

0.0

-0.5

-1.0

-2.0 0.0 2.0

1.0

0.5

0.0

-0.5

-1.0

-2.0 0.0 2.0

TanhReLU

NEURAL NETWORK
Activation functions

Sec 6.2.3, Deep Learning by C Bishop

65

9:37 AM

SoftMax Activation

𝝋 𝒙𝒊 =
𝒆𝒙𝒊

σ𝒊
𝒌 𝒆

𝒙𝒋
 for k units

𝑶𝟏

𝑶𝟐

𝑶𝟑

PROBABILITIES

DISTRIBUTION OF ALL

LABELS

𝟎. 𝟏

𝟎. 𝟕

𝟎. 𝟐

NEURAL NETWORK
Activation function

66

9:37 AM

Output

layer

Hidden

layer

input

layer

Hidden

layer 1

input

layer

Hidden

layer 2

Output

layer

Hidden

layer M-1
Hidden

layer M

SHALLOW LEARNING DEEP LEARNING

NEURAL NETWORK: Architecture
A regular neural network architecture A deep neural network architecture

Deep Learning

Deep learning is an artificial intelligence function that
imitates the workings of the human brain in processing
data and creating patterns for use in decision making.

Deep learning is a subset of machine learning in
artificial intelligence that has networks capable of
learning supervised/unsupervised from data that is
structured/unstructured or labelled/unlabelled.

67

9:37 AM

Source: https://www.investopedia.com/terms/d/deep-learning.asp

68

Artificial
Intelligence

Machine
Learning

Deep Learning

9:37 AM

(DEEP) NEURAL NETWORK
Optimisation

• Stochastic gradient descent

• Mini-batch gradient descent

• Batch gradient descent

• Backpropagation

69

9:37 AM

BACKPROPAGATION
Algorithm for Updating Learning Systems

70

WNEW ← WOLD + WCHANGE

Learning Systems Update

E = Output - Target

9:37 AM

Sec 8.1.1 to 8.1.3, Deep Learning by C Bishop

Backpropagation Algorithm

71

9:37 AM

𝒋 𝒌𝒙𝒊

𝒉𝒋 ෝ𝒚𝒌

𝒘𝒋𝒊 𝒘𝒌𝒋

Backpropagation: Forward Pass

72

9:37 AM

𝒋 𝒌𝒙𝒊
𝒘𝒋𝒊 𝒘𝒌𝒋

𝒉𝒋 ෝ𝒚𝒌

Sec 8.1.1 to 8.1.3, Deep Learning by C Bishop

Backpropagation: Error at Output layer

73

9:37 AM

𝒋 𝒌𝒙𝒊
𝒘𝒋𝒊 𝒘𝒌𝒋

𝒉𝒋 ෝ𝒚𝒌

𝒆𝒌 = 𝒚𝒌 − ෝ𝒚𝒌

Sec 8.1.1 to 8.1.3, Deep Learning by C Bishop

Backpropagation: Backward pass

74

9:37 AM

𝒋 𝒌𝒙𝒊
𝒘𝒋𝒊 𝒘𝒌𝒋

𝒉𝒋 ෝ𝒚𝒌

𝒆𝒌 = 𝒚𝒌 − ෝ𝒚𝒌

𝜹𝒌 = (𝒚𝒌 − ෝ𝒚𝒌) ෝ 𝒚𝒌 (𝟏 − ෝ𝒚𝒌)

Output layer delta (𝜹𝒌) considering sigmoidal output node(s)

Sec 8.1.1 to 8.1.3, Deep Learning by C Bishop

Backpropagation: Backward pass

75

9:37 AM

𝒋 𝒌𝒙𝒊
𝒘𝒋𝒊 𝒘𝒌𝒋

𝒉𝒋 ෝ𝒚𝒌

𝒆𝒌 = 𝒚𝒌 − ෝ𝒚𝒌

𝜹𝒌 = (𝒚𝒌 − ෝ𝒚𝒌) ෝ 𝒚𝒌 (𝟏 − ෝ𝒚𝒌)

Hidden layer delta (𝜹𝒋) considering sigmoidal hidden node(s)

𝜹𝒋 = 𝒉𝒋 (𝟏 − 𝒉𝒋) σ𝒌 𝜹𝒌 𝒘𝒌𝒋

Sec 8.1.1 to 8.1.3, Deep Learning by C Bishop

Backpropagation: Backward pass

76

9:37 AM

𝒋 𝒌𝒙𝒊
𝒘𝒋𝒊 𝒘𝒌𝒋

𝒉𝒋 ෝ𝒚𝒌

𝒆𝒌 = 𝒚𝒌 − ෝ𝒚𝒌

𝜹𝒌 = (𝒚𝒌 − ෝ𝒚𝒌) ෝ 𝒚𝒌 (𝟏 − ෝ𝒚𝒌)

Hidden layer delta (𝜹𝒋) considering sigmoidal hidden node(s)

𝚫𝒘𝒌𝒋 = 𝜼 𝜹𝒌 𝒉𝒋

𝚫𝒘𝒋𝒊 = 𝜼 𝜹𝒋 𝒙𝒊

Sec 8.1.1 to 8.1.3, Deep Learning by C Bishop

BACKPROPAGATION
Algorithm for Updating Learning Systems

77

E = Output - Target

9:37 AM

Sec 8.1.1 to 8.1.3, Deep Learning by C Bishop

BACKPROPAGATION
Deep Learning

78

Hidden

layer 1
input

layer

Hidden

layer 2

Output

layer
Hidden

layer M-1

Hidden

layer M

Hidden

layer 3

Hidden

layer 4

Hidden

layer 5

Hidden

layer 6

Back pass

output

Hidden

layer 7

Forward pass

inputs

Output - Target

Gradient of error

w.r.t weights

9:37 AM

79

ෝ𝒚

𝑾𝑿𝑯𝟏
𝑾𝑯𝟏𝑯𝟐

𝑾𝑯𝟐𝑯𝟑
𝑾𝑯𝟑𝑯𝟒

𝑾𝑯𝟒𝑯𝟓
𝑾𝑯𝟓𝑯𝟔

𝑾𝑯𝟔𝑯𝟕
𝑾𝑯𝒎−𝟐,𝑯𝒎−𝟏⋯ 𝑾𝑯𝒎𝒀

𝐱

Back pass

𝐞 = ෝ𝒚 − 𝐲

𝜹

BACKPROPAGATION
Deep Learning

Forward pass

9:37 AM

80

𝑾𝑿𝑯𝟏
𝑾𝑯𝟏𝑯𝟐

𝑾𝑯𝟐𝑯𝟑
𝑾𝑯𝟑𝑯𝟒

𝑾𝑯𝟒𝑯𝟓
𝑾𝑯𝟓𝑯𝟔

𝑾𝑯𝟔𝑯𝟕
𝑾𝑯𝒎−𝟐,𝑯𝒎−𝟏⋯ 𝑾𝑯𝒎𝒀

Gradient of error back propagation

Vanishing Gradient

Extremely small gradient Initial Gradient

ෝ𝒚
𝐱

9:37 AM

81

ෝ𝒚

𝑾𝑿𝑯𝟏
𝑾𝑯𝟏𝑯𝟐

𝑾𝑯𝟐𝑯𝟑
𝑾𝑯𝟑𝑯𝟒

𝑾𝑯𝟒𝑯𝟓
𝑾𝑯𝟓𝑯𝟔

𝑾𝑯𝟔𝑯𝟕
𝑾𝑯𝑳−𝟐,𝑯𝑳−𝟏⋯ 𝑾𝑯𝑳𝒀

𝐱

𝐞 = ෝ𝒚 − 𝐲
Forward pass: ෝ𝒚 = 𝝋𝑳(𝑾𝑳𝝋𝑳−𝟏(𝑾𝑳 −𝟏 ⋯ 𝝋𝟑(𝑾𝟑𝝋𝟐(𝑾𝟐𝝋𝟏(𝑾𝟏𝐱))) ⋯))

Vanishing Gradient

ෝ𝒚 = 𝑾𝑳

𝟎. 𝟓 ⋯ 𝟎. 𝟎
⋮ ⋱ ⋮

𝟎. 𝟎 ⋯ 𝟎. 𝟓

𝑳−𝟏 𝒘 = 𝟎. 𝟓𝑳 −𝟏 for a large L this will

be extremely small. That is,

weight 𝒘 is a an exponentially

decreasing function of 𝑳

This is caused by sigmoid

function because its derivative

lies between 0.0 and 0.25

9:37 AM

82

ෝ𝒚

𝑾𝑿𝑯𝟏
𝑾𝑯𝟏𝑯𝟐

𝑾𝑯𝟐𝑯𝟑
𝑾𝑯𝟑𝑯𝟒

𝑾𝑯𝟒𝑯𝟓
𝑾𝑯𝟓𝑯𝟔

𝑾𝑯𝟔𝑯𝟕
𝑾𝑯𝑳−𝟐,𝑯𝑳−𝟏⋯ 𝑾𝑯𝑳𝒀

𝐱

𝐞 = ෝ𝒚 − 𝐲
Forward pass: ෝ𝒚 = 𝝋𝑳(𝑾𝑳𝝋𝑳−𝟏(𝑾𝑳 −𝟏 ⋯ 𝝋𝟑(𝑾𝟑𝝋𝟐(𝑾𝟐𝝋𝟏(𝑾𝟏𝐱))) ⋯))

ෝ𝒚 = 𝑾𝑳

𝟎. 𝟓 ⋯ 𝟎. 𝟎
⋮ ⋱ ⋮

𝟎. 𝟎 ⋯ 𝟎. 𝟓

𝑳−𝟏 𝒘 = 𝟎. 𝟓𝑳 −𝟏 for a large L this will

be extremely small. That is,

weight 𝒘 is a an exponentially

decreasing function of 𝑳

Vanishing Gradient

Solution:

Use of ReLU function

𝝋𝟏 𝒙 = 𝒎𝒂𝒙 (𝟎, 𝒙)

9:37 AM

83

Vanishing Gradient

gradient become

very small

Convergence

virtually stops

because weights do

not change any more

𝑾

𝑳𝒐𝒔𝒔

9:37 AM

84

𝑾𝑿𝑯𝟏
𝑾𝑯𝟏𝑯𝟐

𝑾𝑯𝟐𝑯𝟑
𝑾𝑯𝟑𝑯𝟒

𝑾𝑯𝟒𝑯𝟓
𝑾𝑯𝟓𝑯𝟔

𝑾𝑯𝟔𝑯𝟕
𝑾𝑯𝒎−𝟐,𝑯𝒎−𝟏⋯ 𝑾𝑯𝒎𝒀

Gradient of error back propagation

Exploding Gradient

Extremely large gradient Initial Gradient

ෝ𝒚
𝐱

9:37 AM

model weights go to NaN values during training.

NaN!

85

ෝ𝒚

𝑾𝑿𝑯𝟏
𝑾𝑯𝟏𝑯𝟐

𝑾𝑯𝟐𝑯𝟑
𝑾𝑯𝟑𝑯𝟒

𝑾𝑯𝟒𝑯𝟓
𝑾𝑯𝟓𝑯𝟔

𝑾𝑯𝟔𝑯𝟕
𝑾𝑯𝑳−𝟐,𝑯𝑳−𝟏⋯ 𝑾𝑯𝑳𝒀

Exploding Gradient

𝐱

𝐞 = ෝ𝒚 − 𝐲
Forward pass: ෝ𝒚 = 𝝋𝑳(𝑾𝑳𝝋𝑳−𝟏(𝑾𝑳 −𝟏 ⋯ 𝝋𝟑(𝑾𝟑𝝋𝟐(𝑾𝟐𝝋𝟏(𝑾𝟏𝐱))) ⋯))

ෝ𝒚 = 𝑾𝑳

𝟏. 𝟓 ⋯ 𝟎. 𝟎
⋮ ⋱ ⋮

𝟎. 𝟎 ⋯ 𝟏. 𝟓

𝑳−𝟏 𝒘 = 𝟏. 𝟓𝑳 −𝟏 for a large L this will

be extremely larger. That is,

weight 𝒘 is a an exponentially

increase function of 𝑳

This is caused by initialization

of weights with large values.

9:37 AM

86

ෝ𝒚

𝑾𝑿𝑯𝟏
𝑾𝑯𝟏𝑯𝟐

𝑾𝑯𝟐𝑯𝟑
𝑾𝑯𝟑𝑯𝟒

𝑾𝑯𝟒𝑯𝟓
𝑾𝑯𝟓𝑯𝟔

𝑾𝑯𝟔𝑯𝟕
𝑾𝑯𝑳−𝟐,𝑯𝑳−𝟏⋯ 𝑾𝑯𝑳𝒀

Exploding Gradient

𝐱

𝐞 = ෝ𝒚 − 𝐲
Forward pass: ෝ𝒚 = 𝝋𝑳(𝑾𝑳𝝋𝑳−𝟏(𝑾𝑳 −𝟏 ⋯ 𝝋𝟑(𝑾𝟑𝝋𝟐(𝑾𝟐𝝋𝟏(𝑾𝟏𝐱))) ⋯))

Solution:

Gradient clipping and/or better

weight initialization
ෝ𝒚 = 𝑾𝑳

𝟏. 𝟓 ⋯ 𝟎. 𝟎
⋮ ⋱ ⋮

𝟎. 𝟎 ⋯ 𝟏. 𝟓

𝑳−𝟏 𝒘 = 𝟏. 𝟓𝑳 −𝟏 for a large L this will

be extremely larger. That is,

weight 𝒘 is a an exponentially

increase function of 𝑳

9:37 AM

87

Exploding Gradient

Highly fluctuating

gradient descent

Weight abruptly

changes.

Skips Global minima

𝑾

𝑳𝒐𝒔𝒔

9:37 AM

Part 4

Practical
Session

See attached document in Canvas

88

	Slide 1: Shallow to Deep Neural Networks
	Slide 2: Learning objectives (neural networks)
	Slide 3: Content (neural networks)
	Slide 4: Part 1 Introduction
	Slide 5
	Slide 6: Intrinsic Intelligence? Inside a baby’s mind Experiment: Warneken &Tomasello (2006)
	Slide 7: Causal understanding of water displacement by a crow Experiment: Sarah et al. (2014), Auckland and Cambridge Video Source: https://www.youtube.com/watch?v=ZerUbHmuY04
	Slide 8
	Slide 9: Learning / Training Video Source: https://www.youtube.com/watch?v=Ak7bPuR2rDw (Accessed on 21 Feb 2021)
	Slide 10
	Slide 11: Unsupervised
	Slide 12: Reinforcement learning
	Slide 13: Supervised
	Slide 14: Learning , bold italic f , : bold italic cap X , goes to bold italic y
	Slide 15: Learning , bold italic f , : bold italic cap X , goes to bold italic y
	Slide 16: Learning: bold italic g of bold cap X ~ bold italic f of bold cap X
	Slide 17: Search a function bold italic g : bold cap X goes to bold italic y that approximates bold italic f open paren bold italic x close paren
	Slide 18
	Slide 19: Requirements of Learning
	Slide 20: Represent a model
	Slide 21: Represent a model
	Slide 22: Represent a model bold italic h sub bold italic t element of bold italic cap H
	Slide 23: Represent a model bold italic h sub bold italic t element of bold italic cap H
	Slide 24: Which model bold italic h sub bold italic t element of bold italic cap H to pick?
	Slide 25: Optimise model bold italic h sub bold italic t element of bold italic cap H by minimizing error
	Slide 26: Does error bold italic cap E open paren bold italic h sub bold italic t , open paren bold script cap D close paren close paren minimization work?
	Slide 27: Does error bold italic cap E open paren bold italic h sub bold italic t , open paren bold script cap D close paren close paren minimization work?
	Slide 28: Does error bold italic cap E open paren bold italic h sub bold italic t , open paren bold script cap D close paren close paren minimization work?
	Slide 29: Does error bold italic cap E open paren bold italic h sub bold italic t , open paren bold script cap D close paren close paren minimization work?
	Slide 30: Does error bold italic cap E open paren bold italic h sub bold italic t , open paren bold script cap D close paren close paren minimization work?
	Slide 31: Optimizer: Gradient Descent
	Slide 32: Optimizer: Gradient Descent
	Slide 33: Versions of Gradient Descent
	Slide 34: Gradient Descent: Versions
	Slide 35: Gradient Descent: Versions
	Slide 36: Training Method (from previous lecturers)
	Slide 37: Training Method (from previous lecturers)
	Slide 38: Bias-Variance Issue (from previous lecturers)
	Slide 39: Is the chosen model good? (from previous lecturers)
	Slide 40: Avoid Overfitting (from previous lecturers)
	Slide 41
	Slide 42
	Slide 43
	Slide 44: Regression and Classification
	Slide 45: Tasks: Regression and Classification
	Slide 46: Regression
	Slide 48: Loss function: Mean Squared Error, bold italic cap E
	Slide 49: Loss function: Mean Absolute Error, bold italic cap E
	Slide 50: Classification
	Slide 52: Loss function: Misclassification rate, bold italic cap E
	Slide 53: Loss function: Log loss
	Slide 54: Cross Entropy, bold italic cap E
	Slide 55: Neural Networks
	Slide 56: Neural Networks
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61: Sigmoid activation
	Slide 62: Tangent hyperbolic activation
	Slide 63: Rectified Linear Unit (ReLU)
	Slide 64: Sigmoid
	Slide 65: SoftMax Activation
	Slide 66
	Slide 67: Deep Learning
	Slide 68
	Slide 69: (DEEP) NEURAL NETWORK Optimisation
	Slide 70: BACKPROPAGATION Algorithm for Updating Learning Systems
	Slide 71: Backpropagation Algorithm
	Slide 72: Backpropagation: Forward Pass
	Slide 73: Backpropagation: Error at Output layer
	Slide 74: Backpropagation: Backward pass
	Slide 75: Backpropagation: Backward pass
	Slide 76: Backpropagation: Backward pass
	Slide 77: BACKPROPAGATION Algorithm for Updating Learning Systems
	Slide 78: BACKPROPAGATION Deep Learning
	Slide 79: BACKPROPAGATION Deep Learning
	Slide 80: Vanishing Gradient
	Slide 81: Vanishing Gradient
	Slide 82: Vanishing Gradient
	Slide 83: Vanishing Gradient
	Slide 84: Exploding Gradient
	Slide 85: Exploding Gradient
	Slide 86: Exploding Gradient
	Slide 87: Exploding Gradient
	Slide 88

