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Learning objectives (neural networks)

By the end of this week, you will be able to

 Learn ‘concepts of learning’ in Neural Networks
» Understand gradient descent and backpropagation algorithms
* Distinguish shallow and deep neural network architectures

» Apply and evaluate neural networks for a pattern recognition

(image classification) problem — in practical session
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Content (neural networks)

 Part 1: Introduction

* Part 2: Fundamental Theory
« Supervised Learning problem
* Design of learning process

» Gradient descent optimization

« Part 3: Neural Network Architectures
* Neural Network Components
* The Backpropagation algorithm

* Deep Neural Networks

 Part 4: Practical Exercise

"' P
hristopher M. Bishop ' :

Deep Learning

, Foundations -
# and Concepts \

| recommend Deep Learning by C Bishop
https://www.bishopbook.com/



https://www.bishopbook.com/
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Part 1
Introduction
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Brain /- Intelligence



Intrinsic

Intelligence?
Inside a baby’s mind

Experiment:
Warneken &Tomasello (2006)

Video Source:

https://www.youtube.com/watch?v=cUWIIxpUfMO
(Accessed on 21 Feb 2021)



https://www.youtube.com/watch?v=cUWIIxpUfM0
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Causal understanding of

R AN b I ¥ 5 Y " . 4
s e - : o 8 v TRV RS RN Experiment: Sarah et al. (2014), Auckland and Cambridge
2 LY - + Video Source: https://www.youtube.com/watch?v=ZerUbHmuY04
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https://www.youtube.com/watch?v=ZerUbHmuY04

| earning by
example



Learning / Training

Video Source:
https://www.youtube.com/watch?v=Ak7bPuR2rDw
(Accessed on 21 Feb 2021)

1


https://www.youtube.com/watch?v=Ak7bPuR2rDw
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Types of Learning

\\\\
Other forms
_ | of Learning
Supervised Unsupervised semi- supervised

self-supervised
reinforcement

(this lecture) (re-visit previous lectures) (not in scope of this module)

10
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Categorise input features

Unsu perV|Sed or learns the input
features representation
or learns the structure of

the input

X learner y
Input Output

Learning loop

Re-visit previous lectures: Clustering (K-Means, DB Scan); Dimensionality reduction; Anomaly detection, Variational Autoencoder (VAE; is not a
part of this module):

11
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Reinforcement learning

. . . Environment
(this topic is not part of this module)

reward

X learner y
Input Output

Learning loop

Example are game playing (most popular games are ‘Atari’ and ‘Hide and Seek’ where reinforcement learning (RL) is used, or RL is heavily used
in robotics for learning control and actions)

Explore (not part of this module): Reinforcement Learning: An Introduction by Richard S Sutton

12
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Supervised

Supervisor

y = f(x)

target Appel

N\

y

Output Orange

learner

Feedback loop




Learning f: X -y

Supervised learning is a mapping f of inputs X to outputs Y

Inputs X € Input space X outputs y € output space Y
14



Learning f: X -y

We need to find the unknown target function f that maps x to y

Inputs X € Input space X model space H outputs y € output space Y

15



Learning: g(X) ~ f(X)

We need to search a function g(X) that can approximate f(X)

Example Training Task: AND Logic Problem

Input X = (Xq1,X2,X3,X0)7, X; = (%31, %12) ,

X1 X2 y Output y = {0,1}
x: 0 O 0
Number of Inputs d = 2
X,. O 1 0 Each input x takes values either 0 or 1
Input-space X =24 = 22 = 4
X3. 1 0 0 : .
Xy 1 1 1 Number of outputs 1

Output y takes 2 options from {0,1}
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Search a function g: X — y that approximates f(x)

h € HH — g (— J=9)
Output

17



Part 2
Learning Theory
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Reqguirements of Learning

Learning needs to

Represent a model (use a neural network architecture, deep neural networks)
Evaluate the model (use a loss/cost function, e.g., Cross Entropy or MSE)

Optimize the model (use an optimizer, e.g., backpropagation — Adam or SGD)

19
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Represent a model

A line separating data can be considered as a model

X1 X2 y 2
10 O T
2.0 1 0
31 0 0
4. 1 1 1

20
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Represent a model

A line separating data can be considered a model
which equivalent to a single neuron or a perceptron

21
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Represent a model h, € H

A line separating data can be considered a model
which equivalent to a single neuron or a perceptron

Perceptron is a simple linear combination of X4
inputs, which is written as: Wy W

— —wvd
h= g(x) = Y1 Wi x; = xowy,
This equation is also equivalent to linear regression (y = mx + c) ht

where Wo IS a threshold. Real bottleneck of /
. W»
Deep Learning

X2
The model h; has the weights w; and the
threshold w, as its trainable parameters. Model i, as a perceptron / single neuron.

Read: Sec 4.1 and Sec 5.1, Deep Learning by C Bishop 22
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Represent a model h, € H

A line separating data can be considered as a model

A model h; as a perceptron.

d
zwi X; = XoWo 1 <> 7777777777777777777777777777777777777777 3
i=1

d

z w; x; — xoWo = 0 This equation is also called a hyperplane Hyperplane

f=il

For an artificial input (also called bias) x, = 1 we 0 O O >
have: 0 1 X1
d

z w; x; = 0 This is an equation of a single neuron hyperplane as decision boundary

=0

23
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Which model h, € Hto pick?

How to evaluate a model: compute cost of choosing a model

onoox  y=f® x2 |
1: 0 0 0
2. 0 1 0
3: 1 0 0
4: 1 1 1
Cost function such as the error rate:

N
1
E(he(D)) =1 ) (9w # F(X))
j=1

24
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Optimise model h, € H by minimizing error

How to optimize a model: compute cost of adjust the model weights

Function g of the model has parameter w: N
X2
d
9= gu®)= ) wixi =0 1§
i=0

Simple algorithm:

Repeat parameter w update fort = 2,3, ..., M as:

o N\
W, = Wi HYX OC/ J
0 1

Until the error rate E (h:(D)) is acceptable or close to zero.

25



Does error E(h;(D)) minimization work?

Let's see an example (house price): Note that y and x values are simplified to 1, 2 and 3
A
x = area(m?) y = price (in £) y
1: 1000 100K
2: 2000 200K 3 ‘
3: 3000 300K

Now, the cost function is a squared error:

N
1
E(he(9) =52 (gw() = Fx))°
j=1



Does error E(h,(D)) minimization work? "

Note that y and x values are simplified to 1, 2 and 3 E(9w1 (x)) = %Z?’:l(f(xj) — gw(xj))2
A
4
y
3
3 O
Model / line is LS >
2 close to x-axis 2
hy
1 g\/ 1.5
0 > 0.5
0 1 2 3 X

0.0 > Wq
0.0 0.5 1.0 1.5 2

Model h; for wy = 0 and w; = 0.0: Error E(w,) for wy = 0 and w; = 0.0:

. . . —nN2 —nN2 —N)2
gw(x) = wo +wyx; fori = 1,2,3 E(gw(x)) = L=0HE0HEZ07 _ 5 33

2x3

27



Does error E(h,(D)) minimization work? """

Note that y and x values are simplified to 1, 2 and 3 E(9w1 (x)) = %Z?’:l(f(xj) — gw(xj))2
A

A

y
h, :
X
2
1.5 \"‘4
> 0.5 X

S kRN W

0.0 05 1.0 15 2

Model h; for wy = 0 and w; = 0.5: Error E(w,) for wy = 0 and w; = 0.5:

= 0.58

= . — - 2 _1)2 _ 2
gw(x;)) = wy +wyx; fori = 1,2,3 E(gw(x)) _ (1-0.5) +(22*;) +(3-1.5)

28



Does error E(h,(D)) minimization work? """

Note that y and x values are simplified to 1, 2 and 3 E(9w1 (x)) = %Z?’:l(f(xj) — gw(xj))2
h; A

4

y g\/
3
O

3 2.5
2 O 2 xg ,
1 o 1.5 “"'4
O > 05 X ..... o ’

O 1 2 3 X 0.0 A)( > Wl

Model h; for wy = 0 and w; = 1: Error E(w,) for wy = 0 and w; = 1:

Iw(x;)) =wo+wyx; fori = 1,2,3 E(gu(®) = (1-12+@=2)*+B=3)2 _ 4 o

2x3

29



Does error E(hy(D)) minimization work? """

he

yA

; o Yes,ltdoes’i
2.

2 O

| o But how

. . much

0 1 2 3

* welght to oo
change In

X

E(gw,(x)) = %Z}Vn(f(xj) — gw(x))”

X

0.0

- = > Wq
0.5 1.0 1.5 2

Model h; for wo = 0 and w; = 1: eaC h Step’) Error E(w;) for wy = 0 and w; = 1:

gw(x;) =wy +wyx; fori = 1,2,3

(1-1)%2+(2-2)%+(3-3)%
E(gw(x)) = — 0.0

2%3

30
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Optimizer: Gradient Descent

Function g of the model has parameter w:

initial

Sweight Wy

¥ learning

d
Iw(X) = ZWi x; =0
i=0

Gradient Descent Algorithm:

¥ Steps
Ew) | \y"
Repeat parameter w update fort = 2,3, ..., M. Global
C Optimum

/\/—\/ W*
W = Wiq + 7] aE((;gv”:(x))x for learning rate 7 g

t

W

Until error rate E (gw(x)) is acceptable or goes to zero.

Sec 7.2, Deep Learning by C Bishop 31
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Optimizer: Gradient Descent

Function g of the model has parameter w:

A
d initial
gw(®) = ) wix; =0 Swe'ght Wi
i=0 O
Gradient Descent Algorithm: Y learning
¥ S Steps
E(w) \
Repeat parameter w update fort = 2,3, ..., M. Global
C Optimum
W*

w; = w;_; +Aw;,where A is weight change (step) at t

Until error rate E (g (x)) is acceptable or goes to zero

Sec 7.2, Deep Learning by C Bishop 32



Versions of Gradient Descent

Stochastic Gradient Descent
t=20

w initial weights

for t in epochs do

D « shuffle(D)

for x; € D do // for each sample

Vw; = 0E(gw,(Xj))/(0wW,) // gradient of
error with respect to weight w;

Wi = Wj_; + nVw;x;

t=t+1

Sec 7.2, Deep Learning by C Bishop

9:37 AM

Batch Gradient Descent
t=20

w initial weights

for t in epochs do

D « shuffle(D)

for x; € D do // for each sample

Vw = Vw + 9E (gw(x;))/(OwW)X; // gradient of
error with respect to weight w;

33



Gradient Descent: Versions

Stochastic Gradient Descent

cost

M,

epochs

Sec 7.2, Deep Learning by C Bishop

cost

Batch Gradient Descent

epochs

9:37 AM

34
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Gradient Descent: Versions

Stochastic Gradient Descent Batch Gradient Descent

Sec 7.2, Deep Learning by C Bishop 35
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Training Method

(from previous lecturers)

Training Set Test Set

36
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Training Method

(from previous lecturers)

A

Low bias high bias
cost

Test cost

Training cost

>

epochs

37



Bias-Variance Issue

(from previous lecturers)

Accuracy vary
marginally on trials

low
variance

X

Accuracy is off by high
large margin bias

Accuracy is off by low
small margin bias

Sec 4.3, Deep Learning by C Bishop

Accuracy vary
a lot on trials

high
variance

X X
X %

9:37 AM

38



Is the chosen model good?

O O O
O

O O
O

- O
O

Training data Underfit Overfit
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Avoid Overfitting

(from previous lecturers)

Training Set Validation Set  Test Set

Figure 1.6, Deep Learning by C Bishop 40
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Avoid Overfitting

(from previous lecturers) N

Low bias high bias

cost
Validation cost

Training cost
O >

Stop Training here!\j—\} epochs

Pick this model!

Sec 9.3.1 Deep Learning by C Bishop a1
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® | | | | |
22| 17| Regression and Classification
Class/Traget attribute
Inputs Attributes Targi[\/é)rl_%sst;c')sutput RegreSSion
’ Uty (Dependent) Continuous
Al A2 _ (Numerical)
Ex. 0 A, A2, A3, labeled data
Ex. 1 A1, A2, A3,
Ex'i At, AZ, A3, Target (Class)
* Ak A2 s Attributes (A3) L
Records Ex. 4 Al A2, A3, CIaSS|f|Cat|0n
Ex.5 Al A2, A3, .
Ex. 6 2 . ” Discrete |
Ex.7 a1, p2, A3, (Categorical)
Ez A, A2, Adg labeled data
X. Alg A2, A3q

(from previous lecturers)

9:37 AM

44



[
0% °
0% ® )
()
Continuous

labeled data

9:37 AM

Tasks: Regression and Classification

Inputs (X)

Target (Y)

Area (m2) Distance(mile) Price (£EBn)

Ex.
EX.
Ex.
Ex.
EX.
Ex.
Ex.
EX.
Ex.
Ex.

© 00 N OO 0o A W N L O

76.85
76.97
7710
85.28
85.42
88.02
77.25
77.49
85.81
98.81

17.27
19.54
18.51
46.09
35.83
2.59
6.34
6.98
12.18
2.18

0.15
0.5
0.76
0.23
0.6
0.67
0.89
0.2
0.55
9.45

(from previous lecturers)

Discrete
labeled data
Inputs (X) Class (Y)
cETEE. Length (cm) Weight (kg) Sales

Ex. 0 232 3.2 Good -
Ex. 1 70.9 19.5 Bad -
Ex. 2 60.5 18.51 Bad -
Ex. 3 24.5 4.6 Good -
Ex. 4 110.0 35.83 Bad -
Ex. 5 238 3.7 Good -
Ex. 6 258 4.5 Good -
Ex. 7 24.7 4.9 Good -
Ex. 8 85.8 25.6 Bad -
Ex. 9 78.8 20.33 Bad -

45
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| ,.gl--i,'ﬂ-ﬂhi Stock 4
| TR Price

2 .
E]

)

22| Regression

y = f(x) =wix +wy

(from previous lecturers)

Revenue (x)

9:37 AM

v" Best Fit

v" Find the line
(parameters of a line
equation) that
minimize the norm of
the y errors

v (sum of the squares)

Error
e, = Vi -Yi

8
€ = z()/’\i —}’i)z
i=1

46
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Loss function: Mean Squared Error, E

n
1
F = — I
nZ(yl Yi)
i=1

y; - predicted output
y; - target output
n - number of examples in training/test set

48
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Loss function: Mean Absolute Error, E

n
E—lzr
ey Vi - yil
1=1

y; - predicted output
y; - target output
n - number of examples in training/test set

49



Attribute
(x2)

(from previous lecturers)

2| Classification

y = fx) =wix +w

Attribute (x;)

9:37 AM

v" Best Fit

v Find the line
(parameters of a line
equation) that
minimize the error
(misclassification) rate

50
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Loss function: Misclassification rate, E

E 1271: b @

" n £,

“ 1(yl yl)
=

y; - predicted output
y; - target output
n - number of examples in training/test set

52
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Loss function: Log loss

It effectively works by updating network weights on correct classification
and penalizing models for a misclassification

This part will be zero if y; = 0 This part will be zero if y; = 1

N -

~log P(y; 1) = —~((Dlog#) + (1 — y)log(1 — 7))

___________________________________________________________________

y; - predicted output
y; - target output
n - number of examples in training/test set

53
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Cross Entropy, E

C
E = _EYilog(j’\i)
i=1

y; - predicted output distribution (SoftMax output)
y; - target output (target out distribution , one-hot encoding)
C - number of classes

54



Neural Networks

Inputs
neurons

Biological networks of
neurons in human brains

Hidden
neurons

Output
neuron

Al representation
of biological neural networks

L0 wo
*@ synapse
axon from a neuron ynap
woLo
dendrite ™\

cell body

Zw?‘,ﬂf-g +b

un oy

Y

W2

9:37 AM

D wimi +
\ ey

output axon

activation
function

55
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Neural Networks

Hidden
neurons

Inputs
neurons

Output

neuron 1
10 1] |1
% 01 1| |0

1 Biological networks of 2 Al representation 3 Mathematical representation
neurons in human brains of biological neural networks of the neural networks

56



NEURAL NETWORK 9:37 AM

Architecture

Hidden
layer

57



NEURAL NETWORK 9:37 AM

Weights (parameters)

58



input
layer

O

Hidden
layer

9:37 AM

For n inputs, a hidden layer node’s h;
output is expressed as:

Where ¢y, Is an activation function:

Iy wy

*@ synapse
axon from a neuron
~_ WoTo

output axon

activation
function

NEURAL NETWORK

Computation: Hidden layer

59
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For n inputs, a hidden layer node’s h;
output is expressed as:

n
h] = (ph( W]l Xi >
i=1

@ y Where ¢y, Is an activation function:
For m hidden nodes and an output node, the
output nodes output is expressed as:

Output

layer

m
Y=o Z Wii. h;
j=1

Hidden NEURAL NETWORK

layer Computation: Output layer

60



Sigmoid activation

1
(p(x) — 1 + e_x @(x) 0.5

9:37 AM

61



Tangent hyperbolic activation

ex . e_x 0.5
QP(x) = — o
erxt+e™*

-0.5

-10 -5

9:37 AM

62
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Rectifled Linear Unit (ReLU)

@(x) = max (0, x)
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RelLU Tanh Sigmoid

1.0 1.0 1.0
0.5 0.5 0.5
0.0 0.0 0.0
-0.5 -0.5 -0.5
-1.0 -1.0 -1.0
-2.0 0.0 2.0 -2.0 0.0 2.0 -2.0 0.0 2.0

Sec 6.2.3, Deep Learning by C Bishop ”
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SoftMax Activation
0.1
x_ — xx for k unItS PROBABILITIES
(p( l) Zk 0.7 DISTRIBLX;ELI\SIOF ALL

65



NEURAL NETWORK: Architecture o

A regular neural network architecture A deep neural network architecture

AP
SZelell
2080
SR @/ N/

“ \/\V SN\
Ve

L1 layer
Hidden Hidden Hidden Hidden
layer 1 layer 2 layer M-1 layer M
SHALLOW LEARNING DEEP LEARNING

66
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Deep Learning

Deep learning is an artificial intelligence function that
Imitates the workings of the human brain in processing
data and creating patterns for use in decision making.

Deep learning is a subset of machine learning in
artificial intelligence that has networks capable of
learning supervised/unsupervised from data that Is
structured/unstructured or labelled/unlabelled.

Source: https://www.investopedia.com/terms/d/deep-learning.asp

67
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Artificial
Intelligence

Deep Learning

68
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(DEEP) NEURAL NETWORK

Optimisation

______________________________________________________________________________________________________________________________________________________________

« Stochastic gradient descent

initial weight w

global
1nin

Mini-batch gradient descent BE(w)
| - E(w)

y learning
steps

« Batch gradient descent

« Backpropagation .

______________________________________________________________________________________________________________________________________________________________
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BACKPROPAGATION

Algorithm for Updating Learning Systems

E = Qutput - Target

Wyew < WOLD T WCHANGE

Sec 8.1.1to 8.1.3, Deep Learning by C Bishop 0
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Backpropagation Algorithm

: )
"'...."‘ W = ij

JU

71
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Backpropagation: Forward Pass

Sec 8.1.1to0 8.1.3, Deep Learning by C Bishop -
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Backpropagation: Error at Output layer

h; Vi
"...-“‘ Wji ij

Sec 8.1.1to0 8.1.3, Deep Learning by C Bishop s
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Backpropagation: Backward pass

Output layer delta (6;) considering sigmoidal output node(s)

h; Yk
Wji ij <

0=k — V)V 1 — Yi)

Sec 8.1.1to0 8.1.3, Deep Learning by C Bishop -
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Backpropagation: Backward pass

Hidden layer delta (8;) considering sigmoidal hidden node(s)

0=k — V)V 1 — Yi)

Sec 8.1.1to0 8.1.3, Deep Learning by C Bishop .
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Backpropagation: Backward pass

Hidden layer delta (8;) considering sigmoidal hidden node(s)

h; Vi
Wji ij <
. 0k =0k — Y)Y (1 — ¥yi)
< AWk] —n 6k h]
AWji —n 6] Xi

Sec 8.1.1to0 8.1.3, Deep Learning by C Bishop 6
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BACKPROPAGATION

Algorithm for Updating Learning Systems

Sec 8.1.1to 8.1.3, Deep Learning by C Bishop

77
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BACKPROPAGATION

Deep Learning

NN
%Ay{{“}\«ﬁ“ko{“k'ﬁ“kog“:k{ﬁ

o XXPONK T INKIT INKET N
X IR IR XRE o SR B

LEXN EXN@EI@ELES
A S

input  Hidden Hidden Hidden Hidden Hidden  Hidden Hidden Hidden Hidden Output
layer layer 1 layer 2 layer 3 layer 4 layer 5 layer 6  layer 7 layer M-1  layer M layer

Forward pass
Output - Target

Back pass ,
Gradient of error

w.r.t weights

78
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BACKPROPAGATION

Deep Learning

N TN N7 O\
mm'ﬁ“kﬂ“ky{{k'z k A
XSO V&IV“V’W“\%’.\%’ %
v,‘«“;&“l& LRl N 4,‘0‘& 4,‘0‘&

V"‘V

AN A A AW AN

Wxu, Wun, Wa,u, Waan, Whone Waen, WhH,

Forward pass

Back pass
)
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Vanishing Gradient

ﬂ“y{{“}\«ﬁ“ko{“k'ﬁ“kog“k%

L " VAY, VA, S X X N XX
3 XET TN N7 TN N N
N/ \\V N/ \\V N/ \T N/\
AN AN AN A2 S

Gradient of error back propagation

éxtreme'v small gradient o nalCEae

80
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Vanishing Gradient

N7
Ao XLoXL o X o oo R
X @GR WXL IR IR XEK o XK 0 S
RSO IR IO ORI IO
N LN AN

Wxu, Whin, Wany, Wasny, Wayng Wasng Waen, - Wa, ,h, 1 Why

P

Forwardpass:y = @ (W@ 1(Wy_1-- @3(W30,(Wr01(W1Xx))) )

e=y—-Yy
0.5 - 0.01*1 w=0.5"""foralarge L thiswill © ¢ This is caused by sigmoid
y=w,| : - be extremely small. That is, function because its derivative
00 - 05 weight w is a an exponentially lies between 0.0 and 0.25
' ' decreasing function of L

81



Vanishing Gradient

v
ool et
4G AL AL AL AL AL AN

PRI

9:37 AM

WHL—Z;HL—l WHLY

0.5 - 0.01%1 w = 0.5% 1 for a large L this will
y=W, [ : : ] be extremely small. That is,
0.0 0.5 weight w is a an exponentially
decreasing function of L

Solution:
Use of ReLU function
@1 (x) = max (0, x)

82
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Vanishing Gradient

gradient become
1 very small

Loss Convergence
virtually stops

because weights do

not change any more

83
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Exploding Gradient

\‘c{“}m{“}m{“}mﬁg\dkwﬁ
LK INEIET INKET TN \’«’»7 \.«’»‘/
@, (AR 9?“’«»’ S 200
§ A: }\ AA A N Va A‘A& A‘A‘ ﬂ 0
N DA AN

500 NN vy

/ Q) VAN AVIANY
N

Gradient of error back propagation
NaN! ——

84



Exploding Gradient

Wxn,

Forwardpass:y = @ (W@ 1(Wy_1-- @3(W30,(Wr01(W1Xx))) )

7
W/ 3

SN

{“%\Yi“?{g“%gﬂk%“*f
PN

Ok
AL AT
SR S
O

N
&
p N\

Wuo.n, Wa,n, Waon, Wa,ue Woen, WaH,

9:37 AM

WHL—Z;HL—l WHLY

e =

P

y -y

1.5

0.0

0 O]L—l

1.5

w = 1.5L 1 for a large L this will
be extremely larger. That is,
weight w is a an exponentially
Increase function of L

This is caused by initialization
of weights with large values.

85



Exploding Gradient

Wxn,

Forwardpass:y = @ (W@ 1(Wy_1-- @3(W30,(Wr01(W1Xx))) )

7
W/ 3

SN

{“%\Yi“?{g“%gﬂk%“*f
PN

Ok
AL AT
SR S
O

N
&
p N\

Wuo.n, Wa,n, Waon, Wa,ue Woen, WaH,

9:37 AM

WHL—Z;HL—l WHLY

1.5

0.0

0 O]L—l

1.5

w = 1.5L 1 for a large L this will
be extremely larger. That is,
weight w is a an exponentially
Increase function of L

Solution:
Gradient clipping and/or better
weight initialization
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Exploding Gradient

Highly fluctuating
gradient descent

Loss Weight abruptly
changes.

Skips Global minima
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