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Learning objectives (neural networks)

By the end of this week, you will be able to

• Learn ‘concepts of learning’ in Neural Networks

• Understand gradient descent and backpropagation algorithms 

• Distinguish shallow and deep neural network architectures

• Apply and evaluate neural networks for a pattern recognition 

(image classification) problem – in practical session
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Content (neural networks)
• Part 1: Introduction

• Part 2: Fundamental Theory

• Supervised Learning problem

• Design of learning process

• Gradient descent optimization

• Part 3:  Neural Network Architectures

• Neural Network Components

• The Backpropagation algorithm

• Deep Neural Networks

• Part 4: Practical Exercise
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I recommend Deep Learning by C Bishop

https://www.bishopbook.com/ 

https://www.bishopbook.com/


Part 1
  Introduction
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Brain / Intelligence

esenkartal / iStock Vectors / Getty Images



Intrinsic 

Intelligence? 
Inside a baby’s mind

Experiment: 

Warneken &Tomasello (2006)
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Video Source: 

https://www.youtube.com/watch?v=cUWIIxpUfM0

(Accessed on 21 Feb 2021)

https://www.youtube.com/watch?v=cUWIIxpUfM0


Causal understanding of 
water displacement by a crow

Experiment: Sarah et al. (2014), Auckland and Cambridge
Video Source: https://www.youtube.com/watch?v=ZerUbHmuY04
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https://www.youtube.com/watch?v=ZerUbHmuY04
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Learning by 
example
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Learning / Training
Video Source: 
https://www.youtube.com/watch?v=Ak7bPuR2rDw
(Accessed on 21 Feb 2021)

https://www.youtube.com/watch?v=Ak7bPuR2rDw
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Supervised Unsupervised

Other forms 

of Learning 
semi- supervised 

self-supervised 

reinforcement 

Types of Learning

(not in scope of this module)(re-visit previous lectures)(this lecture)
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learner𝑥 ො𝑦
OutputInput

Learning loop

Unsupervised
Categorise input features 

or learns the input 

features representation 

or learns the structure of 

the input 

Re-visit previous lectures:  Clustering (K-Means, DB Scan); Dimensionality reduction;  Anomaly detection, Variational Autoencoder (VAE; is not a 

part of this module):
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learner𝑥 ො𝑦
OutputInput

Learning loop

Reinforcement learning

𝑟

Environment
reward

Example are game playing (most popular games are ‘Atari’ and ‘Hide and Seek’ where reinforcement learning (RL) is used, or RL is heavily used 

in robotics for learning control and actions)

Explore (not part of this module):  Reinforcement Learning: An Introduction by Richard S Sutton

(this topic is not part of this module)
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learner𝑥 ො𝑦
OutputInput

Supervisor
𝑦 = 𝑓(𝑥)

Feedback loop

Supervised

Appel

Orange

target



Learning 𝒇 ∶ 𝑿 → 𝒚

14

9:37 AM

𝓧 

Supervised learning is a mapping 𝑓 of inputs 𝓧 to outputs 𝓨

𝒇

Inputs 𝐗 ∈ Input space 𝒳 outputs 𝒚 ∈ output space 𝒴

𝓨



Learning 𝒇 ∶ 𝑿 → 𝒚
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𝓧 

We need to find the unknown target function 𝒇 that maps 𝑥 to 𝑦

𝒇 ∈ 𝓗

Inputs 𝐗 ∈ Input space 𝓧 outputs 𝒚 ∈ output space 𝓨model space 𝓗

𝓨



Learning: 𝒈 𝐗  ~ 𝒇 𝐗
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𝑥1 𝑥2 𝑦

𝐱𝟏: 0 0 0

𝐱𝟐: 0 1 0

𝐱𝟑: 1 0 0

𝐱𝟒: 1 1 1

Input     𝐗 = 𝐱𝟏, 𝐱𝟐, 𝐱𝟑, 𝐱𝟒
𝑇, 𝐱𝑖  = (𝑥𝑖1, 𝑥𝑖2) ,

Output  𝑦 =  {0,1}

Number of Inputs 𝑑 =  2  

Each input  𝑥 takes values either 0 or 1 

Input-space 𝓧 = 2𝑑  =  22  =  4

Number of outputs 1

Output 𝑦 takes 2 options from 0,1

Example Training Task: AND Logic Problem

We need to search a function 𝑔(𝑋) that can approximate 𝑓(𝑋)

Colour Shape

Fruit

Fruit Name
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ℎ𝑡 ∈ 𝓗 → 𝑔x ො𝑦 = 𝑔(x)
OutputInput

Supervisor 𝑦 = 𝑓(x)

Feedback loop

Search a function 𝒈: 𝐗 → 𝒚 that approximates 𝒇(𝒙) 



Part 2

Learning Theory

18



Requirements of Learning
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Learning needs to

Represent a model (use a neural network architecture, deep neural networks)

Evaluate the model (use a loss/cost function, e.g., Cross Entropy or MSE)

Optimize the model (use an optimizer, e.g., backpropagation – Adam or SGD)



Represent a model
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𝑥1 𝑥2 𝑦

1: 0 0 0

2: 0 1 0

3: 1 0 0

4: 1 1 1

𝑥1

𝑥2

ℎ𝑡

10

0

1

A line separating data can be considered as a model

𝒟



Represent a model
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𝑥1

𝑥2

ℎ𝑡

10

0

1

A line separating data can be considered a model 

which equivalent to a single neuron or a perceptron

𝑥1
1

𝑥2

𝑤1

𝑤2

𝑤0

ℎ𝑡



Represent a model 𝒉𝒕 ∈ 𝑯
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𝑥1
𝑥0

A line separating data can be considered a model 

which equivalent to a single neuron or a perceptron

Perceptron is a simple linear combination of 

inputs, which is written as:

𝒉𝒕 =  𝒈 𝒙 = σ𝒊=𝟏
𝒅 𝒘𝒊 𝒙𝒊 ≥  𝒙𝟎𝒘𝟎 ,

where 𝑤0  is a threshold.

The model ℎ𝑡  has the weights 𝑤𝑖 and the 

threshold 𝑤0 as its trainable parameters. 

𝑥2

𝑤1

𝑤2

𝑤0

Model ℎ𝑡 as a perceptron / single neuron. 

ℎ𝑡

Read: Sec 4.1 and Sec 5.1, Deep Learning by C Bishop

This equation is also equivalent to linear regression (y = mx + c)

Real bottleneck of 

Deep Learning



Represent a model 𝒉𝒕 ∈ 𝑯
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A line separating data can be considered as a model

A model ℎ𝑡 as a perceptron. 

෍

𝑖=1

𝑑

𝑤𝑖 𝑥𝑖 ≥ 𝑥0𝑤0

෍

𝑖=1

𝑑

𝑤𝑖 𝑥𝑖 − 𝑥0𝑤0 = 0

For an artificial input (also called bias) 𝑥0 = 1 we 

have:

෍

𝑖=0

𝑑

𝑤𝑖 𝑥𝑖 = 0 hyperplane as decision boundary

This equation is also called a hyperplane

This is an equation of a single neuron

𝑥1

𝑥2

ℎ𝑡

10

0

1

Hyperplane



Which model 𝒉𝒕 ∈ 𝑯 to pick?
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How to evaluate a model: compute cost of choosing a model 

Cost function such as the error rate:

𝐸(ℎ𝑡(𝒟)) =
1

𝑁
෍

𝑗=1

𝑁

𝑔𝐰(𝐱𝑗) ≠ 𝑓(𝐱𝑗)

𝑥1 𝑥2 𝑦 = 𝑓(𝐱)

1: 0 0 0

2: 0 1 0

3: 1 0 0

4: 1 1 1

𝒟

𝑥1

𝑥2

ℎ𝑡

10

0

1

ℎ1

ℎ2

ℎ𝑡−1

ℎ𝑀



Optimise model 𝒉𝒕 ∈ 𝑯 by minimizing error
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How to optimize a model: compute cost of adjust the model weights 

Function 𝑔 of the model has parameter 𝐰:

ො𝑦 =  𝑔𝐰(𝐱) = ෍

𝑖=0

𝑑

𝑤𝑖 𝑥𝑖 = 0

Simple algorithm:

Repeat parameter 𝐰 update for 𝑡 = 2, 3, … , 𝑀 as:

𝐰𝑡  =  𝐰𝑡−1 + ො𝑦 𝐱, 

Until the error rate 𝐸(ℎ𝑡(𝒟)) is acceptable or close to zero.

𝑥1

𝑥2

ℎ𝑡

10

0

1

ℎ1

ℎ2

ℎ𝑡−1

ℎ𝑀
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𝑥

𝑦

30

0

3

Let’s see an example (house price):

𝑥 = 𝑎𝑟𝑒𝑎(𝑚2) 𝑦 = 𝑝𝑟𝑖𝑐𝑒 (𝑖𝑛 £)

1: 1000 100K

2: 2000 200K

3: 3000 300K

Now, the cost function is a squared error:

𝐸(ℎ𝑡(𝐱) =
1

2𝑁
෍

𝑗=1

𝑁

𝑔𝐰(𝐱𝑗) − 𝑓(𝐱𝑗)
2

1 2

1

2

Does error 𝑬(𝒉𝒕(𝓓)) minimization work?

Note that y and x values are simplified to 1, 2 and 3



Does error 𝑬(𝒉𝒕(𝓓)) minimization work?

27

9:37 AM

𝑥

𝑦

0

3

1

2

1.5

3

0.5 1.0

1.5

2.5

2

2

0.5

Model ℎ𝑡 for 𝑤0 = 0 and 𝑤1 = 0.0:

𝑔𝐰 𝑥𝑖 = 𝑤0 + 𝑤1𝑥𝑖 for 𝑖 =  1, 2, 3

Error 𝐸(𝑤1) for 𝑤0 = 0 and 𝑤1 = 0.0:

𝐸 𝑔𝐰 𝐱 =
1−0 2+ 2−0 2+ 3−0 2

2∗3
= 2.33

ℎ𝑡

30 1 2 0.0

0.0

𝑤1

𝐸(𝑔𝑤1
(𝑥))

Model / line is 

close to x-axis

Note that y and x values are simplified to 1, 2 and 3 = 
1

2𝑁
σ𝑗=1

𝑁 𝑓 𝐱𝑗 − 𝑔𝐰(𝐱𝑗)
2



Does error 𝑬(𝒉𝒕(𝓓)) minimization work?
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𝑥

𝑦

30
0

3

1 2

1

2

1.5

3

0.5 1.0

1.5

2.5

2

2

0.5

Model ℎ𝑡 for 𝑤0 = 0 and 𝑤1 = 0.5:

𝑔𝐰 𝑥𝑖 = 𝑤0 + 𝑤1𝑥𝑖 for 𝑖 =  1, 2, 3

Error 𝐸(𝑤1) for 𝑤0 = 0 and 𝑤1 = 0.5:

𝐸 𝑔𝐰 𝐱 =
1−0.5 2+ 2−1 2+ 3−1.5 2

2∗3
= 0.58

ℎ𝑡

0.0

0.0

𝑤1

𝐸(𝑔𝑤1
(𝑥))Note that y and x values are simplified to 1, 2 and 3 = 

1

2𝑁
σ𝑗=1

𝑁 𝑓 𝐱𝑗 − 𝑔𝐰(𝐱𝑗)
2



Does error 𝑬(𝒉𝒕(𝓓)) minimization work?
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𝑥

𝑦

30
0

3

1 2

1

2

𝑤1

𝐸(𝑔𝑤1
(𝑥))

1.5

3

0.5 1.0

1.5

2.5

2

2

0.5

Model ℎ𝑡 for 𝑤0 = 0 and 𝑤1 = 1:

𝑔𝐰 𝑥𝑖 = 𝑤0 + 𝑤1𝑥𝑖 for 𝑖 =  1, 2, 3

Error 𝐸(𝑤1) for 𝑤0 = 0 and 𝑤1 = 1:

𝐸 𝑔𝐰 𝐱 =
1−1 2+ 2−2 2+ 3−3 2

2∗3
= 0.0

ℎ𝑡

0.0

0.0

Note that y and x values are simplified to 1, 2 and 3 = 
1

2𝑁
σ𝑗=1

𝑁 𝑓 𝐱𝑗 − 𝑔𝐰(𝐱𝑗)
2



Does error 𝑬(𝒉𝒕(𝓓)) minimization work?
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𝑥

𝑦

30
0

3

1 2

1

2

𝑤1

𝐸(𝑔𝑤1
(𝑥))

1.5

3

0.5 1.0

1.5

2.5

2

2

0.5

Model ℎ𝑡 for 𝑤0 = 0 and 𝑤1 = 1:

𝑔𝐰 𝑥𝑖 = 𝑤0 + 𝑤1𝑥𝑖 for 𝑖 =  1, 2, 3

Error 𝐸(𝑤1) for 𝑤0 = 0 and 𝑤1 = 1:

𝐸 𝑔𝐰 𝐱 =
1−1 2+ 2−2 2+ 3−3 2

2∗3
= 0.0

ℎ𝑡

0.0

0.0

= 
1

2𝑁
σ𝑗=1

𝑁 𝑓 𝐱𝑗 − 𝑔𝐰(𝐱𝑗)
2

Note that y and x values are simplified to 1, 2 and 3

Yes, it does

But how 
much 

weight to 
change in 

each step?  



Optimizer: Gradient Descent
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𝐰

𝐸(𝐰)

Function 𝑔 of the model has parameter 𝐰:

 𝑔𝐰(𝐱) = ෍

𝑖=0

𝑑

𝑤𝑖 𝑥𝑖 = 0

Gradient Descent Algorithm:

Repeat parameter 𝐰 update for 𝑡 = 2, 3, … , 𝑀.

𝐰𝑡  =  𝐰𝑡−1 + 𝜼
𝝏𝑬 𝒈𝒘 𝒙

𝝏 𝐰𝒕
𝐱  for learning rate  𝜂

Until error rate 𝐸 𝑔𝐰 𝐱  is acceptable or goes to zero.

learning

Steps

initial 

weight 𝐰𝟏

Global

Optimum 

𝐰∗

𝐰𝑡  =  𝐰𝑡−1 + ො𝑦 𝐱, 

Sec 7.2, Deep Learning by C Bishop



Optimizer: Gradient Descent

32

9:37 AM

𝐰

𝐸(𝐰)

Function 𝑔 of the model has parameter 𝐰:

 𝑔𝐰(𝐱) = ෍

𝑖=0

𝑑

𝑤𝑖 𝑥𝑖 = 0

Gradient Descent Algorithm:

Repeat parameter 𝐰 update for 𝑡 = 2, 3, … , 𝑀.

𝐰𝑡  =  𝐰𝑡−1 + ∆ 𝐰𝑡 , where ∆ is weight change (step) at 𝑡

Until error rate 𝐸 𝑔𝐰 𝐱  is acceptable or goes to zero

learning

Steps

initial 

weight 𝐰𝟏

Global

Optimum 

𝐰∗

Sec 7.2, Deep Learning by C Bishop

𝜼
𝝏𝑬 𝒈𝒘 𝒙

𝝏 𝐰𝒕



Versions of Gradient Descent
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Stochastic Gradient Descent 

𝑡 = 0

𝐰 initial weights

for 𝑡 in epochs do

      𝒟 ← 𝑠ℎ𝑢𝑓𝑓𝑙𝑒(𝒟)

      for 𝐱𝑗 ∈ 𝒟 do  // for each sample

            ∇𝐰𝑗 = 𝜕𝐸(𝑔𝐰𝒕
(𝐱𝒋))/(𝜕𝐰𝑡) // gradient of 

error with respect to weight 𝐰𝑗

            𝐰𝑗  =  𝐰𝑗−1 + 𝜼∇𝐰𝑗𝐱𝒋 

      𝑡 = 𝑡 + 1

Batch Gradient Descent 

𝑡 = 0

𝐰 initial weights

for 𝑡 in epochs do

      𝒟 ← 𝑠ℎ𝑢𝑓𝑓𝑙𝑒(𝒟)

      for 𝐱𝑗 ∈ 𝒟 do  // for each sample

            ∇𝐰 = ∇𝐰 + 𝜕𝐸(𝑔𝐰(𝐱𝒋))/ 𝜕𝐰 𝐱𝑗 // gradient of 

error with respect to weight 𝐰𝑗

      𝐰𝑡  =  𝐰𝑡−1 + 𝜼
∇𝐰

|𝒟|

      𝑡 = 𝑡 + 1 

Sec 7.2, Deep Learning by C Bishop



Gradient Descent: Versions
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epochs

cost

epochs

Stochastic Gradient Descent Batch Gradient Descent 

cost

Sec 7.2, Deep Learning by C Bishop



Gradient Descent: Versions
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Stochastic Gradient Descent Batch Gradient Descent 

Sec 7.2, Deep Learning by C Bishop



Training Method
(from previous lecturers)
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Training Set Test Set



Training Method
(from previous lecturers)
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epochs

cost
Low bias high bias

Test cost

Training cost



Bias-Variance Issue
(from previous lecturers)
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Accuracy is off by 

large margin

Accuracy is off by 

small margin

high 

bias

low 

bias

low 

variance

high 

variance

Accuracy vary 

marginally on trials 

Accuracy vary 

a lot on trials 

Sec 4.3, Deep Learning by C Bishop



Is the chosen model good?
(from previous lecturers)
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Avoid Overfitting
(from previous lecturers)
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Training Set Test SetValidation Set

Figure 1.6, Deep Learning by C Bishop
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epochs

cost

Low bias high bias

Validation cost

Training cost

Stop Training here!

Pick this model!

Avoid Overfitting
(from previous lecturers)

Sec 9.3.1 Deep Learning by C Bishop



Part 3

Neural Network 
Architectures

42
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learner𝑥 ො𝑦
OutputInput

Supervisor
𝑓(𝑥)

Feedback loop



Regression and Classification
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Discrete 

(Categorical) 

labeled data

#

Inputs Attributes

(Independent)

Target/Class/Output

Attributes

(Dependent)

A1 A2 A3

Records

Ex. 0 A10 A20 A30

Ex. 1 A11 A21 A31

Ex. 2 A12 A22 A32

Ex. 3 A13 A23 A33

Ex. 4 A14 A24 A34

Ex. 5 A15 A25 A35

Ex. 6 A16 A26 A36

Ex. 7 A17 A27 A37

Ex. 8 A18 A28 A38

Ex. 9 A19 A29 A39

Continuous 

(Numerical) 

labeled data

Regression

Classification

Target (Class)

Attributes ( A3 )

Class/Traget attribute

9:37 AM

(from previous lecturers)



Tasks: Regression and Classification
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Discrete 

labeled data

#
Inputs (X) Class (Y)

Length (cm) Weight (kg) Sales

Ex. 0 23.2 3.2 Good

Ex. 1 70.9 19.5 Bad

Ex. 2 60.5 18.51 Bad

Ex. 3 24.5 4.6 Good

Ex. 4 110.0 35.83 Bad

Ex. 5 23.8 3.7 Good

Ex. 6 25.8 4.5 Good

Ex. 7 24.7 4.9 Good

Ex. 8 85.8 25.6 Bad

Ex. 9 78.8 20.33 Bad

#

Inputs (X) Target (Y)

Area (m2) Distance(mile) Price (£Bn)

Ex. 0 76.85 17.27 0.15

Ex. 1 76.97 19.54 0.5

Ex. 2 77.10 18.51 0.76

Ex. 3 85.28 46.09 0.23

Ex. 4 85.42 35.83 0.6

Ex. 5 88.02 2.59 0.67

Ex. 6 77.25 6.34 0.89

Ex. 7 77.49 6.98 0.2

Ex. 8 85.81 12.18 0.55

Ex. 9 98.81 2.18 9.45

Continuous 

labeled data

9:37 AM

(from previous lecturers)



Regression

46

Stock

Price

(𝑦)

Revenue (𝑥)

𝑒1

𝑒2

𝑒3 𝑒4

𝑒5

𝑒6 𝑒7

𝑒8

Error

 𝑒𝑖 =  ෝ𝑦𝑖  – 𝑦𝑖

✓ Best Fit 

✓ Find the line 

(parameters of a line 

equation) that 

minimize the norm of 

the y errors

✓ (sum of the squares)

𝒆 = ෍

𝑖=1

8

ෝ𝑦𝑖  – 𝑦𝑖
2

ො𝑦  =  𝑓(𝑥)  = 𝑤1𝑥 + 𝑤0

9:37 AM

(from previous lecturers)



Loss function: Mean Squared Error, 𝑬
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𝑬 =
1

𝑛
෍

𝑖=1

𝑛

ෝ𝑦𝑖  – 𝑦𝑖
2

ෝ𝑦𝑖 -  predicted output

𝑦𝑖 - target output

𝑛  - number of examples in training/test set



Loss function: Mean Absolute Error, 𝑬
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𝑬 =
1

𝑛
෍

𝑖=1

𝑛

| ෝ𝑦𝑖 – 𝑦𝑖|

ෝ𝑦𝑖 -  predicted output

𝑦𝑖 - target output

𝑛  - number of examples in training/test set



Classification

50

✓ Best Fit 

✓ Find the line 

(parameters of a line 

equation) that 

minimize the error 

(misclassification) rate

𝐞 =
1

𝑛
෍

𝑖=1

𝑛

ෝ𝑦𝑖  ≠ 𝑦𝑖

ො𝑦  =  𝑓(𝑥)  = 𝑤1𝑥 + 𝑤0

Attribute 
(𝑥2)

Attribute (𝑥1)

9:37 AM

(from previous lecturers)



Loss function: Misclassification rate, 𝑬
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𝑬 =
1

𝑛
෍

𝑖=1

𝑛

( ෝ𝑦𝑖  ≠ 𝑦𝑖)

ෝ𝑦𝑖 -  predicted output

𝑦𝑖 - target output

𝑛  - number of examples in training/test set



Loss function: Log loss
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−𝐥𝐨𝐠 𝐏 𝑦𝑖 ෝ𝑦𝑖) = −( (𝒚𝒊)𝐥𝐨𝐠( ෝ𝑦𝑖) + 𝟏 − 𝒚𝒊 𝐥𝐨𝐠 𝟏 − ෝ𝑦𝑖  )

ෝ𝑦𝑖 -  predicted output

𝑦𝑖 - target output

𝑛  - number of examples in training/test set

This part will be zero if 𝑦𝑖 = 0 This part will be zero if 𝑦𝑖 = 1 

It effectively works by updating network weights on correct classification 

and penalizing models for a misclassification



Cross Entropy, 𝑬
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𝐸 = − ෍

𝑖=1

𝐶

𝒚𝒊𝐥𝐨𝐠 ෝ𝒚𝑖

   

ෝ𝑦𝑖 -  predicted output distribution (SoftMax output)

𝑦𝑖 - target output (target out distribution , one-hot encoding)

𝐶  - number of classes



Neural Networks

55

Biological networks of 

neurons in human brains

AI representation 

of  biological neural networks

Inputs

neurons

Hidden

neurons

Output

neuron

9:37 AM
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Inputs

neurons

Hidden

neurons

Output

neuron

Biological networks of 

neurons in human brains

Mathematical representation 

of the neural networks

1 0 1

0 1 1

1

1

0

1 2 3
AI representation 

of  biological neural networks

9:37 AM

Neural Networks
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Output 

layer

Hidden 

layer

input 

layer

NEURAL NETWORK
Architecture
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Output 

layer

Hidden 

layer

input 

layer

𝑾𝑯𝑰 =

𝒘𝟏,𝟏 ⋯ 𝒘𝟏,𝟑

⋮ ⋱ ⋮
𝒘𝟒,𝟏 ⋯ 𝒘𝟒,𝟑

𝑾𝑯𝑶 =

𝒘𝟏𝟏

⋮
𝒘𝟒𝟏

NEURAL NETWORK
Weights (parameters)
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𝒉𝒋 = 𝝋𝒉 ෍

𝒊=𝟏

𝒏

𝒘𝒋𝒊. 𝒙𝒊 

For 𝒏 inputs, a hidden layer node’s 𝒉𝒋 

output is expressed as:

Where 𝝋𝒉 is an activation function:

NEURAL NETWORK
Computation: Hidden layer

Output 

layer

Hidden 

layer

input 

layer

𝑯𝟏𝒘𝟏,𝟏

𝒘𝟏,𝟐

𝒘𝟏,𝟑

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒉𝟏



NEURAL NETWORK
Computation: Output layer
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Output 

layer

Hidden 

layer

input 

layer

𝒉𝒋 = 𝝋𝒉 ෍

𝒊=𝟏

𝒏

𝒘𝒋𝒊. 𝒙𝒊 

𝑯𝟏𝒘𝟏,𝟏

𝒘𝟏,𝟐

𝒘𝟏,𝟑

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒉𝟏

For 𝒏 inputs, a hidden layer node’s 𝒉𝒋 

output is expressed as:

ෝ𝒚 = 𝝋𝑶 ෍

𝒋=𝟏

𝒎

𝒘𝒋𝒌. 𝒉𝒋 

For 𝑚 hidden nodes and an output node, the 

output nodes output is expressed as:

Where 𝝋𝒉 is an activation function:ෝ𝒚
𝑶𝟏

𝒉𝒎

𝒉𝟐

𝒉𝟑
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𝝋 𝒙 =
𝟏

𝟏 +  𝒆−𝒙 

Sigmoid activation

𝝋 𝒙

NEURAL NETWORK
Activation function
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𝝋 𝒙 =
𝒆𝒙 − 𝒆−𝒙

𝒆𝒙 + 𝒆−𝒙

Tangent hyperbolic activation

𝝋 𝒙

NEURAL NETWORK
Activation function
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𝝋 𝒙 = 𝒎𝒂𝒙 (𝟎, 𝒙) 

Rectified Linear Unit (ReLU)

𝝋 𝒙

Source: https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7NEURAL NETWORK
Activation function



Sigmoid

64
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1.0

0.5

0.0

-0.5

-1.0

-2.0        0.0          2.0

1.0

0.5

0.0

-0.5

-1.0

-2.0         0.0          2.0

1.0

0.5

0.0

-0.5

-1.0

-2.0         0.0          2.0

TanhReLU

NEURAL NETWORK
Activation functions

Sec 6.2.3, Deep Learning by C Bishop
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SoftMax Activation

𝝋 𝒙𝒊 =
𝒆𝒙𝒊

σ𝒊
𝒌 𝒆

𝒙𝒋
 for k units

𝑶𝟏

𝑶𝟐

𝑶𝟑

PROBABILITIES 

DISTRIBUTION OF ALL 

LABELS

𝟎. 𝟏

𝟎. 𝟕

𝟎. 𝟐

NEURAL NETWORK
Activation function
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Output 

layer

Hidden 

layer

input 

layer

Hidden 

layer 1

input 

layer

Hidden 

layer 2

Output 

layer

Hidden 

layer M-1
Hidden 

layer M

SHALLOW LEARNING DEEP LEARNING

NEURAL NETWORK: Architecture
A regular neural network architecture A deep neural network architecture



Deep Learning

Deep learning is an artificial intelligence function that 
imitates the workings of the human brain in processing 
data and creating patterns for use in decision making. 

Deep learning is a subset of machine learning in 
artificial intelligence that has networks capable of 
learning supervised/unsupervised from data that is 
structured/unstructured or labelled/unlabelled. 

67
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Source: https://www.investopedia.com/terms/d/deep-learning.asp
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Artificial 
Intelligence

Machine 
Learning

Deep Learning
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(DEEP) NEURAL NETWORK
Optimisation

• Stochastic gradient descent

• Mini-batch gradient descent

• Batch gradient descent

• Backpropagation

69
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BACKPROPAGATION
Algorithm for Updating Learning Systems

70

WNEW ← WOLD + WCHANGE

Learning Systems Update

E = Output - Target

9:37 AM

Sec 8.1.1 to 8.1.3, Deep Learning by C Bishop



Backpropagation Algorithm

71
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𝒋 𝒌𝒙𝒊

𝒉𝒋 ෝ𝒚𝒌 

𝒘𝒋𝒊 𝒘𝒌𝒋



Backpropagation:  Forward Pass 

72
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𝒋 𝒌𝒙𝒊
𝒘𝒋𝒊 𝒘𝒌𝒋

𝒉𝒋 ෝ𝒚𝒌 

Sec 8.1.1 to 8.1.3, Deep Learning by C Bishop



Backpropagation: Error at Output layer
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𝒋 𝒌𝒙𝒊
𝒘𝒋𝒊 𝒘𝒌𝒋

𝒉𝒋 ෝ𝒚𝒌 

𝒆𝒌 = 𝒚𝒌  −  ෝ𝒚𝒌

Sec 8.1.1 to 8.1.3, Deep Learning by C Bishop



Backpropagation: Backward pass 
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𝒋 𝒌𝒙𝒊
𝒘𝒋𝒊 𝒘𝒌𝒋

𝒉𝒋 ෝ𝒚𝒌 

𝒆𝒌 = 𝒚𝒌  −  ෝ𝒚𝒌

𝜹𝒌 = (𝒚𝒌 − ෝ𝒚𝒌) ෝ 𝒚𝒌 (𝟏 −  ෝ𝒚𝒌)

Output layer delta (𝜹𝒌) considering sigmoidal output node(s)

Sec 8.1.1 to 8.1.3, Deep Learning by C Bishop



Backpropagation: Backward pass 
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𝒋 𝒌𝒙𝒊
𝒘𝒋𝒊 𝒘𝒌𝒋

𝒉𝒋 ෝ𝒚𝒌 

𝒆𝒌 = 𝒚𝒌  −  ෝ𝒚𝒌

𝜹𝒌 = (𝒚𝒌 − ෝ𝒚𝒌) ෝ 𝒚𝒌 (𝟏 −  ෝ𝒚𝒌)

Hidden layer delta (𝜹𝒋) considering sigmoidal hidden node(s)

𝜹𝒋 = 𝒉𝒋 (𝟏 − 𝒉𝒋) σ𝒌  𝜹𝒌 𝒘𝒌𝒋

Sec 8.1.1 to 8.1.3, Deep Learning by C Bishop



Backpropagation: Backward pass 
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𝒋 𝒌𝒙𝒊
𝒘𝒋𝒊 𝒘𝒌𝒋

𝒉𝒋 ෝ𝒚𝒌 

𝒆𝒌 = 𝒚𝒌  −  ෝ𝒚𝒌

𝜹𝒌 = (𝒚𝒌 − ෝ𝒚𝒌) ෝ 𝒚𝒌 (𝟏 −  ෝ𝒚𝒌)

Hidden layer delta (𝜹𝒋) considering sigmoidal hidden node(s)

𝚫𝒘𝒌𝒋 = 𝜼 𝜹𝒌 𝒉𝒋

𝚫𝒘𝒋𝒊 = 𝜼 𝜹𝒋 𝒙𝒊

Sec 8.1.1 to 8.1.3, Deep Learning by C Bishop



BACKPROPAGATION
Algorithm for Updating Learning Systems

77

E = Output - Target

9:37 AM

Sec 8.1.1 to 8.1.3, Deep Learning by C Bishop



BACKPROPAGATION
Deep Learning

78

Hidden 

layer 1
input 

layer

Hidden 

layer 2

Output 

layer
Hidden 

layer M-1

Hidden 

layer M

Hidden 

layer 3

Hidden 

layer 4

Hidden 

layer 5

Hidden 

layer 6

Back pass

output

Hidden 

layer 7

Forward pass

inputs

Output - Target

Gradient of error

w.r.t weights

9:37 AM
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ෝ𝒚

𝑾𝑿𝑯𝟏
𝑾𝑯𝟏𝑯𝟐

𝑾𝑯𝟐𝑯𝟑
𝑾𝑯𝟑𝑯𝟒

𝑾𝑯𝟒𝑯𝟓
𝑾𝑯𝟓𝑯𝟔

𝑾𝑯𝟔𝑯𝟕
𝑾𝑯𝒎−𝟐,𝑯𝒎−𝟏⋯ 𝑾𝑯𝒎𝒀

𝐱

Back pass

𝐞 = ෝ𝒚  −  𝐲

𝜹

BACKPROPAGATION
Deep Learning

Forward pass

9:37 AM
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𝑾𝑿𝑯𝟏
𝑾𝑯𝟏𝑯𝟐

𝑾𝑯𝟐𝑯𝟑
𝑾𝑯𝟑𝑯𝟒

𝑾𝑯𝟒𝑯𝟓
𝑾𝑯𝟓𝑯𝟔

𝑾𝑯𝟔𝑯𝟕
𝑾𝑯𝒎−𝟐,𝑯𝒎−𝟏⋯ 𝑾𝑯𝒎𝒀

Gradient of error back propagation

Vanishing Gradient

Extremely small gradient Initial Gradient

ෝ𝒚
𝐱

9:37 AM
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ෝ𝒚

𝑾𝑿𝑯𝟏
𝑾𝑯𝟏𝑯𝟐

𝑾𝑯𝟐𝑯𝟑
𝑾𝑯𝟑𝑯𝟒

𝑾𝑯𝟒𝑯𝟓
𝑾𝑯𝟓𝑯𝟔

𝑾𝑯𝟔𝑯𝟕
𝑾𝑯𝑳−𝟐,𝑯𝑳−𝟏⋯ 𝑾𝑯𝑳𝒀

𝐱

𝐞 = ෝ𝒚  −  𝐲
Forward pass: ෝ𝒚 =  𝝋𝑳(𝑾𝑳𝝋𝑳−𝟏(𝑾𝑳 −𝟏 ⋯ 𝝋𝟑(𝑾𝟑𝝋𝟐(𝑾𝟐𝝋𝟏(𝑾𝟏𝐱))) ⋯ )) 

Vanishing Gradient

ෝ𝒚 =  𝑾𝑳

𝟎. 𝟓 ⋯ 𝟎. 𝟎
⋮ ⋱ ⋮

𝟎. 𝟎 ⋯ 𝟎. 𝟓

𝑳−𝟏 𝒘 = 𝟎. 𝟓𝑳 −𝟏 for a large L this will 

be extremely small. That is, 

weight 𝒘 is a an exponentially 

decreasing function of 𝑳

This is caused by sigmoid 

function because its derivative 

lies between 0.0 and 0.25

9:37 AM
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ෝ𝒚

𝑾𝑿𝑯𝟏
𝑾𝑯𝟏𝑯𝟐

𝑾𝑯𝟐𝑯𝟑
𝑾𝑯𝟑𝑯𝟒

𝑾𝑯𝟒𝑯𝟓
𝑾𝑯𝟓𝑯𝟔

𝑾𝑯𝟔𝑯𝟕
𝑾𝑯𝑳−𝟐,𝑯𝑳−𝟏⋯ 𝑾𝑯𝑳𝒀

𝐱

𝐞 = ෝ𝒚  −  𝐲
Forward pass: ෝ𝒚 =  𝝋𝑳(𝑾𝑳𝝋𝑳−𝟏(𝑾𝑳 −𝟏 ⋯ 𝝋𝟑(𝑾𝟑𝝋𝟐(𝑾𝟐𝝋𝟏(𝑾𝟏𝐱))) ⋯ )) 

ෝ𝒚 =  𝑾𝑳

𝟎. 𝟓 ⋯ 𝟎. 𝟎
⋮ ⋱ ⋮

𝟎. 𝟎 ⋯ 𝟎. 𝟓

𝑳−𝟏 𝒘 = 𝟎. 𝟓𝑳 −𝟏 for a large L this will 

be extremely small. That is, 

weight 𝒘 is a an exponentially 

decreasing function of 𝑳

Vanishing Gradient

Solution: 

Use of ReLU function

𝝋𝟏 𝒙 = 𝒎𝒂𝒙 (𝟎, 𝒙)

9:37 AM
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Vanishing Gradient

gradient become 

very small

Convergence 

virtually stops 

because weights do 

not change any more

𝑾

𝑳𝒐𝒔𝒔

9:37 AM



84

𝑾𝑿𝑯𝟏
𝑾𝑯𝟏𝑯𝟐

𝑾𝑯𝟐𝑯𝟑
𝑾𝑯𝟑𝑯𝟒

𝑾𝑯𝟒𝑯𝟓
𝑾𝑯𝟓𝑯𝟔

𝑾𝑯𝟔𝑯𝟕
𝑾𝑯𝒎−𝟐,𝑯𝒎−𝟏⋯ 𝑾𝑯𝒎𝒀

Gradient of error back propagation

Exploding Gradient

Extremely large gradient Initial Gradient

ෝ𝒚
𝐱

9:37 AM

model weights go to NaN values during training.

NaN!
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ෝ𝒚

𝑾𝑿𝑯𝟏
𝑾𝑯𝟏𝑯𝟐

𝑾𝑯𝟐𝑯𝟑
𝑾𝑯𝟑𝑯𝟒

𝑾𝑯𝟒𝑯𝟓
𝑾𝑯𝟓𝑯𝟔

𝑾𝑯𝟔𝑯𝟕
𝑾𝑯𝑳−𝟐,𝑯𝑳−𝟏⋯ 𝑾𝑯𝑳𝒀

Exploding Gradient

𝐱

𝐞 = ෝ𝒚  −  𝐲
Forward pass: ෝ𝒚 =  𝝋𝑳(𝑾𝑳𝝋𝑳−𝟏(𝑾𝑳 −𝟏 ⋯ 𝝋𝟑(𝑾𝟑𝝋𝟐(𝑾𝟐𝝋𝟏(𝑾𝟏𝐱))) ⋯ )) 

ෝ𝒚 =  𝑾𝑳

𝟏. 𝟓 ⋯ 𝟎. 𝟎
⋮ ⋱ ⋮

𝟎. 𝟎 ⋯ 𝟏. 𝟓

𝑳−𝟏 𝒘 = 𝟏. 𝟓𝑳 −𝟏 for a large L this will 

be extremely larger. That is, 

weight 𝒘 is a an exponentially 

increase function of 𝑳

This is caused by initialization 

of weights with large values.

9:37 AM
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ෝ𝒚

𝑾𝑿𝑯𝟏
𝑾𝑯𝟏𝑯𝟐

𝑾𝑯𝟐𝑯𝟑
𝑾𝑯𝟑𝑯𝟒

𝑾𝑯𝟒𝑯𝟓
𝑾𝑯𝟓𝑯𝟔

𝑾𝑯𝟔𝑯𝟕
𝑾𝑯𝑳−𝟐,𝑯𝑳−𝟏⋯ 𝑾𝑯𝑳𝒀

Exploding Gradient

𝐱

𝐞 = ෝ𝒚  −  𝐲
Forward pass: ෝ𝒚 =  𝝋𝑳(𝑾𝑳𝝋𝑳−𝟏(𝑾𝑳 −𝟏 ⋯ 𝝋𝟑(𝑾𝟑𝝋𝟐(𝑾𝟐𝝋𝟏(𝑾𝟏𝐱))) ⋯ )) 

Solution:

Gradient clipping and/or better 

weight initialization
ෝ𝒚 =  𝑾𝑳

𝟏. 𝟓 ⋯ 𝟎. 𝟎
⋮ ⋱ ⋮

𝟎. 𝟎 ⋯ 𝟏. 𝟓

𝑳−𝟏 𝒘 = 𝟏. 𝟓𝑳 −𝟏 for a large L this will 

be extremely larger. That is, 

weight 𝒘 is a an exponentially 

increase function of 𝑳

9:37 AM
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Exploding Gradient

Highly fluctuating 

gradient descent

Weight abruptly 

changes. 

Skips Global minima

𝑾

𝑳𝒐𝒔𝒔

9:37 AM
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